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Abstract

I will discuss the conjecture mentioned in Adams’ The Knot Book that removing any vertex from an

intrinsically knotted graph results in an intrinsically linked graph. Although Foisy recently showed

that the conjecture doesn’t hold in full generality, it remains open for specific classes of graphs. I

will discuss the case of complete partite graphs and show that the conjecture does in fact hold for

this class of graphs.

This was joint work with Thomas Mattman that began during the summer of 2003 and continued

through the 2003/2004 school year as an honors project. Throughout working on this project, I

presented my research to a variety of conferences and competitions. The funding to allow me to

travel to these events was largely provided by the CSU, Chico Department of Mathematics and

Statistics. In addition, I received a funding from the CSU, Chico Research foundation and the

College of Natural Sciences for the Joint Meetings in January 2004. I also received a travel grant

from the MAA for Mathfest 2003 and the conference at The Ohio State University in summer of
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Chapter 1

Introduction

In this research project, I explored an unsolved problem posed in The Knot Book by Colin Adams

[A94]. One of the reasons I chose this problem is that it combines ideas from both knot theory and

graph theory, and combining ideas from different disciplines often produces very interesting results.

Chapter 1 will be an introduction to graph theory and knot theory, chapter 2 will be the statement

of the problem, and chapter 3 will be the actual proof of that problem. I am assuming the reader has

a strong mathematical background, for example, has completed the junior year of a math degree. A

course in topology would be helpful for some of the more technical aspects of the paper; however it

is not required to understand the main points of my thesis.

1.1 Introduction to Graph Theory

Material in this section could be found in most introductory texts on graph theory, for example

[KPV03].

When you think of a graph, one of the objects in figure 1.1 might come to mind.

In graph theory however, a graph is not one of these familiar objects.

Definition 1 A graph is a finite set V of vertices and a set E ⊂ V × V of edges. We will say that

vertices v1 and v2 are connected by edge (v1,v2), and that edge (v1,v2) is incident to both v1 and v2.

An example of a graph is shown in figure 1.2.

Definition 2 When we refer to deleting an edge e from graph G with edges E and vertices V, we
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Figure 1.1: Common Graphs

Figure 1.2: The K6 Graph

mean to consider a subgraph G′ in which the set of vertices of G′ is V, and the set of edges of G′ is

E\{e}.

Definition 3 When we refer to deleting a vertex v from graph G with edges E and vertices V, we

mean to consider a subgraph G′ in which the set of vertices of G′ is V\{v}, and the set of edges of

G′ is E\{e|e is incident to v}.

Oddly enough, the placement of the vertices and the length and shape of the edges is not stated

in the description of the graph. For example, the graph pictured in figure 1.2 is called K6, and is

an example of a complete graph.

Definition 4 In a complete graph, any pair of vertices is connected by an edge. A complete graph

with n vertices is denoted Kn.

Any other graph that has six vertices and an edge between every pair of vertices would also be called

K6. A few more examples of the K6 graph are shown in figure 1.3.
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Figure 1.3: More examples of K6

At first sight, it might seem strange that several different looking things represent the same

graph. Although the graphs pictured in figures 1.2 and 1.3 are all the same graph, they are different

embeddings of that graph.

Definition 5 An embedding of a graph is a way of placing the graph in R3. Vertices are represented

by distinct points in R3. Edge (v1, v2) is represented by an arc between v1 and v2. Edges with a

common endpoint intersect only at that common endpoint, edges without common endpoints do not

intersect anywhere.

Note: The notion of an arc used in this definition is a fairly intuitive concept; however, it is

defined formally below in definition 17.

The pictures in figures 1.2 and 1.3 represent the same graph because they have the same number

of vertices connected by edges in the same way, however they are different embeddings of the graph

because they are placed differently in space.

Definition 6 The graphs in figures 1.2 and 1.3 are actually two dimensional representations of three

dimensional objects that we call projections. For an embedding of a graph, we do not allow edges to

intersect, so when two lines cross over another, we illustrate this in the projection by having the line

on top solid, and the line underneath broken. In a projection, no more than 2 lines can cross at a

single point.

Note: The term refers to projecting the graph onto a plane. Given a plane P and graph G,

an arbitrarily small perturbation of P or G ensures projection is a homeomorphism except at a
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finite number of double points where 2 edges cross transversally (See section 3.E of Rolfsen [R90]).

Projection for knots and links, which are defined in the next section, is defined in a similar way.

Definition 7 We will call a graph G planar if there exists an embedding of G that can be drawn

completely in the plane. Conversely, a graph for which no embeddings can be drawn in a plane is

non-planar.

Notice that if G is planar, there will exist a projection of G with no crossings.

In this paper, I will be working with a class of graphs called complete partite graphs.

Definition 8 In a complete partite graph, the vertices are partitioned into disjoint subsets, called

parts. Any two vertices in different parts are connected by an edge, while vertices in the same part

are not connected to one another.

A complete partite graph with n parts is denoted Ka1,a2,...,an where the subscripts give the number

of vertices in each part. Several examples of complete partite graphs are shown in figure 1.4; vertices

with the same label belong to the same part. We will consider Ka1,a2,...,an the same as Kb1,b2,...,bn

if {a1,a2,...,an} is a permutation of {b1,b2,...,bn}. Generally we will write the parts in descending

order.

Figure 1.4: Examples of Complete Partite Graphs

Definition 9 Graph G′ is obtained from graph G by splitting a vertex if it is obtained as follows.

To split a vertex v, one must first delete vertex v. Then add vertices v1 and v2, and connect them

by an edge. Then each vertex that was connected to v by an edge, must be connected to exactly one

of v1 or v2 by an edge. An example is shown in figure 1.5.
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A
B C

Figure 1.5: Vertex A Split to Vertices B and C

Notice that in most cases, there are multiple ways to split any vertex v. In fact, if there are n

vertices connected to vertex v, there are 2n ways to split vertex v. To see this, notice that each

vertex connected to vertex v in G can be connected to either v1 or v2 in G′, so there are 2 possibilities

for each of these connections in graph G′.

Definition 10 An expansion of a graph G is a graph constructed from G by adding any number of

vertices and edges and splitting any number of vertices. G is not an expansion of G.

Definition 11 An edge contraction is an operation on an edge e of a graph resulting in a graph

with one less vertex and at least 1 less edge. To contract edge e, delete it and the two vertices v1

and v2 it connects. Then add a new vertex v and add an edge between v and each vertex that was

connected to either v1 or v2. An example of an edge contraction is shown in figure 1.6.

e
v2v1

v

Figure 1.6: Contracting Edge e

Definition 12 A minor of a graph G is a graph constructed by deleting any number of edges and

vertices of G, and contracting any number of edges of G. G is not a minor of itself.

Notice that minor is the opposite of expansion. So, G′ is a minor of G iff G is an expansion of

G′.

Definition 13 A graph G is minor minimal with respect to a property if G exhibits that property,

yet no minor of G exhibits the property.
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I like to think of a graph that is minor minimal with respect to a property as a graph that barely

possesses that property.

A simple example of this is that K3,3 is minor minimal with respect to non-planarity. K3,3

is known to be non-planar (theorem 5 below); however, the removal of an edge, vertex, or the

contraction of an edge all result in a planar graph as pictured in figure 1.7.
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B C
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B

Figure 1.7: Planar minors of K3,3

1.2 Introduction to Knot Theory

We begin with an informal overview of knot theory; a formal look will follow. Informally, a knot

is simply a closed curve in space. To imagine a knot, visualize tying a piece of string and then

connecting the ends. Several mathematical knots are pictured in figure 1.8, scanned from [A94].

Figure 1.8: Examples of Knots

In the real world, it is natural to use an extension cord to simulate a knot because you can easily

connect the ends by plugging it into itself. Once the ends are connected, we have a knot. As long

as you don’t unplug it or cut it anywhere you can move the cord around and we’ll say it is still the
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same knot. For example, there are two common ways to draw a trefoil knot. A progression from

one to the other is drawn in figure 1.9.

Figure 1.9: Trefoil Progression

Once the idea of a knot is understood, a link is fairly simple. A link differs from a knot in that

a link is two or more ropes tangled together, while a knot is only one rope. A link is like a knot in

that the ropes can be moved without changing the link. Several links are pictured in figure 1.10,

scanned from [A94]. Recall definition 6; projections of knots and links are similar in that a knot or

Figure 1.10: Examples of Links

link can not have any points of intersection. So when we project onto a plane, if 2 strands of the

knot or link cross, we draw one solid to illustrate that it is above the other, and the other will be

broken, to illustrate that it is under the first.

So now we have an idea of what knots and links are, and we can use these ideas to figure things

out about them. However, although these ideas are useful, they are insufficient to produce a rigorous

mathematical theory. As usual in mathematics, while the informal ideas are very useful for getting a

general idea of what is going on, we need a more formal definition. Sometimes strange things happen

and the informal ideas do not give us a clear idea of what exactly is going on. In such instances, we

must appeal to the formal definitions. In the following section, I will define knots more formally.
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1.2.1 A Formal Introduction to Knots

Along with knots and links, my goal will be to define isotopy, but first I need to define several other

things.

Definition 14 A topological space is a set, X, with a collection of open sets, Ω, where

∅,X∈ Ω,

If Φ, Θ ∈ Ω, then Φ ∩ Θ ∈ Ω, and

If Φi ∈ Ω, then
⋃

i Φi ∈ Ω.

An important example is X = Rn and Ω = {
⋃

i(B(−→xi , ri))} where B(−→xi , ri) = {−→x : |−→x −−→xi | < ri}.

Definition 15 A function f: X, ΩX → Y, ΩY is continuous if ∀Φ ∈ ΩY , f−1(Φ) ∈ ΩX .

Definition 16 A function f: X → Y is a homeomorphism if f is a bijection and continuous and

f−1 is also continuous.

Definition 17 An arc is a homeomorphism γ:[0,1] → I ⊂ X. We often call the image in X the arc.

Definition 18 S1 is R∪{∞}. Open sets are unions of open set of R and sets of the form (a,∞) ∪

{∞} ∪ (−∞,b) where a,b ∈ R.

Definition 19 K ⊂ R3 is a knot if it is homeomorphic to S1.

Remark: We will often refer to a knot as a simple closed curve.

Definition 20 The unknot is the circle embedded in R3 in the x,y plane centered at (0,0,0) with

radius 1. We will often refer to the unknot as the trivial knot.

Definition 21 L ⊂ R3 is a link if it is homeomorphic to a finite disjoint collection of S1’s.

Definition 22 The unlink (of 2 components) is the link in which both components are circles in the

x,y plane with radius 1
2 , one centered at (-1,0,0) and the other centered at (1,0,0). We will often

refer to the unlink as the trivial link.

Definition 23 For an oriented knot or link, each component has a direction associated with it, to

illustrate this, we draw arrows on the projection. An example is shown in figure 1.11.
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Figure 1.11: An Oriented Link

Figure 1.12: Counting for Linking Number

Definition 24 Given a projection of a two component oriented link, call one component J and one

K. Count each point where J crosses under K as shown in figure 1.12. The absolute value of the

sum over all crossings of J under K is called the linking number, denoted lk(J,K).

As an example, I will calculate the linking number of the link in figure 1.11. Call the component

on the left J and the component on the right K. Notice that J crosses under K at one point, and

according to figure 1.12, we add one for that crossing. So the total linking number is 1. Notice that

if we change the orientation of J, the sign of the crossing changes, but the linking number is still 1

since we take the absolute value.

Definition 25 Knots (or links) K, K’ ∈ R3 are equivalent if there exists a homeomorphism h:

R3 → R3 such that h(K) = K’.

Note that this is a homeomorphism of the whole space, and not just of the knot within that

space.

Definition 26 A crossing change is an operation on a crossing in a projection of a knot, link, or

graph where we switch which strand crosses over and which crosses under. An example is shown in

figure 1.13.
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Figure 1.13: A Crossing Change

Note: a crossing change will generally produce a knot or link that is not equivalent to the original

knot or link.

Definition 27 A tame knot or link is one that is equivalent to an embedding of a polygon or a finite

collection of polygons.

We will only consider tame knots and links. We will also require arcs to be tame in the sense

that they are a subset of some tame knot.

Definition 28 For topological spaces (X,ΩX) and (Y,ΩY ), the following is a description of the

product topology on X × Y. X × Y is a topological space with open sets {∪iΦi × Ψi|Φi ∈ ΩX , Ψi ∈

ΩY }.

Definition 29 A homotopy is a continuous function. h: X × [0,1] → X.

Definition 30 A homotopy h is called an isotopy if h(x,0) = x ∀x∈X, and for each t, h(∗,t)=h|X×{t}

is a homeomorphism of X to itself.

Remark: Informally, we often refer to the homeomorphism h(∗,1): X → X as an “isotopy”.

Intuitively, isotopy is the formal version of manipulating the rope which makes a knot or a link

without cutting the rope. To isotope X (or a subset of X) means to apply the isotopy h(∗,1) to X

(or its subset).

Notice that figure 1.9 is an example of an isotopy, and that very different looking things can

actually be the same knot. This can make studying knot theory difficult because it is hard to know

if two different looking objects are actually different knots or links, or if they are the same after

some isotopy is performed. To help us overcome this difficulty, we have things called invariants.

Definition 31 An invariant is an attribute, usually a number, associated with a knot or link that

will not change through any isotopy of that knot or link.
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An example of an invariant is linking number, which is a link invariant.

We can follow one isotopy by another to get a third isotopy, i.e., given g1, g2, let t move through

each of g1 and g2 “twice as fast” to produce a new isotopy h. Note that within h, g2 needs to be

composed with g1(∗, 1), so that h(∗,1)=g2(∗, 1) ◦ g1(∗, 1). Also, we can compose an isotopy with a

homeomorphism H of X to get an isotopy. g(x,t)=h(H(x),t) is again an isotopy; we’ll write g=h◦H.

Similarly, f(x,t)=H(h(x,t)) is an isotopy; we’ll write f=H◦h.

1.3 Combining the Disciplines

In this project, I explore the idea of knots and links within graphs. A knot in a graph is simply

some path of vertices and edges that forms a knot. Since a knot can’t intersect itself, any vertex or

edge can be used at most one time. Since a knot is a closed loop, the path through the graph must

be closed. To find a link in a graph, the same process is used except we must now follow multiple

disjoint paths through the graph. Notice that such knots or links in a graph depend on how the

graph is embedded in R3. Different embeddings will result in non-equivalent knots or links.

Definition 32 A path in a graph is a sequence of vertices connected by edges.

Definition 33 A simple path is one in which each vertex occurs at most once in the path, except

possibly with the first and last vertex being equal. If the first and last vertex are equal, we will call

the path closed.

Definition 34 A cycle in a graph is a simple closed path in the graph.

Definition 35 We will call an embedding of a graph knotted if it contains a cycle that forms a

non-trivial knot.

Definition 36 We will call an embedding of a graph linked if it contains cycles that form a non-

trivial link.

Any graph that contains a closed loop will have knotted embeddings. However, some embeddings

may exist which are not knotted. For example, two embeddings of K3 are shown in figure 1.14, one

is knotted, one is not.

Similarly, any graph containing two disjoint loops may be linked. However, there may be em-

beddings which are not linked. Two embeddings of K3 ∪ K3 are shown in figure 1.15, one of which

is linked, one of which is not.
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Figure 1.14: Two Embeddings of K3

Figure 1.15: Two Embeddings of K3 ∪ K3

Not all graphs can be drawn without a link; some graphs are linked regardless of the embedding.

Definition 37 An intrinsically linked graph is one for which every embedding is linked.

One such graph is K6. I will now prove that K6 is intrinsically linked, a result first proved by

Conway and Gordon [CG83].

Theorem 1 (Conway and Gordon) K6 is intrinsically linked.

Proof:

Given an embedding of K6, define λ ∈ Z2 by

λ =
∑

lk(C1, C2)mod2

where we sum over all 1
2

(
6
3

)
= 10 pairs of disjoint cycles contained in K6.

Any embedding of K6 can be obtained from any other through isotopy and crossing changes.

While this is intuitively clear, it is difficult to prove. Recall that isotopy is the formal version of

moving a rope of a link around without cutting it. Similarly, isotopy in graphs is a formal way to

say we are moving the edges and vertices around without passing them through one another. Since

isotopy does not change linking number, it will not change λ. I will now show that crossing changes

also do not change λ.
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Since the linking number does not count self crossings, a crossing of an edge with itself or with

an adjacent edge will not change the linking number of any pair of loops in the graph, so it will not

change λ. Every other crossing will be in exactly two pairs of disjoint cycles. To see this, consider

any crossing of two separate edges. Notice this uses two edges and four vertices. It follows that there

are two vertices left. Each edge of the crossing needs one more vertex to create a loop. Therefore,

one edge uses one vertex and the other edge uses the other vertex. There are clearly two ways to

do this, so there are two pairs of disjoint cycles which use the crossing. By changing the crossing,

the linking number of each of the two pairs of loops will be changed by one, therefore, λ will be

unchanged. (Recall, λ is defined mod 2.)

We have shown that λ is the same for all embeddings of K6. Now we will calculate λ for a

particular embedding of K6. Consider the embedding in figure 1.16. Notice that there is only one

Figure 1.16: K6 with the Link in Bold

non-trivial link contained in this embedding (highlighted in bold). The linking number of this link

is 1, so λ is 1. This completes the proof. �

Robertson, Seymour, and Thomas were able to find a list of all graphs that are minor minimal

with respect to intrinsic linking, which resulted in the following theorem.

Theorem 2 A graph is intrinsically linked iff it contains one of the seven Petersen graphs (shown

in figure 1.17) as a minor [RST95].

Note that the leftmost graph in the top row is K3,3,1, the second from the left is K6, and the

graph in the middle of the second row is K4,4 −{e}. It is trivial to verify this for K6, but the other

two are a little harder. To see that the top left graph is K3,3,1, notice that the lowest vertex is

connected to everything, so it is the part with only 1 vertex. Of the remaining vertices, the top two

vertices on the left and the bottom right vertex are the vertices from one of the parts with three

vertices, and the remaining three are the other part. To see the bottom middle graph is K4,4 −{e},

pick one of the top 2 vertices, the four vertices connected to it constitute one part, the other four
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Figure 1.17: The Seven Petersen Graphs

constitute the other part. Notice that the rightmost and leftmost vertices are in different parts, yet

they are not connected by an edge.

In the same way that some graphs have a link in every embedding, some graphs contain a knot

in every embedding.

Definition 38 An intrinsically knotted graph is one for which every embedding is knotted.

One such graph is K7. The proof that K7 is intrinsically knotted is more complicated than the

proof that K6 is intrinsically linked; however, the idea is very similar. This was first proved by

Conway and Gordon in the same paper where they proved that K6 is intrinsically linked [CG83].
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Chapter 2

Defining the Problem

In this chapter, I will discuss the motivation for the work I have done and describe the concept of

my proof.

2.1 Motivation

I began this project in the summer of 2003 during my first research experience. I began by looking

up unsolved questions in The Knot Book by Colin Adams[A94]. There were several that I explored

briefly, however, one really caught my attention. It was Unsolved Question 3 from page 231, “Is it

true that if G is intrinsically knotted, and any one vertex and the edges coming into it are removed,

the remaining graph is intrinsically linked?”

One thing that attracted me to this problem is the fact that it used ideas from both graph theory

and knot theory. Combining multiple disciplines of mathematics can provide very interesting results,

and I feel this problem has that kind of potential.

To get some perspective on this problem, it is helpful to think of it in a slightly different way.

It has been shown that intrinsic knotting is a stronger condition than intrinsic linking (lemma 10

below). That is, we know every intrinsically knotted graph is also intrinsically linked. In essence,

Adams’ question is asking if intrinsic knotting is so much stronger than intrinsic linking that we can

actually remove a vertex, along with all edges incident to it, from an intrinsically knotted graph and

still have the result be an intrinsically linked graph.
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2.2 Not True in General

After working with this question for several months, we discovered a paper by Joel Foisy [F03]

providing a counter example. His graph, shown in figure 2.1, is intrinsically knotted, yet removing

vertex v results in a graph which is not intrinsically linked. This counterexample shows that the

Figure 2.1: Foisy’s Counterexample

conjecture is not true in general. However, the question is still interesting and still open for various

classes of graphs. I think it would be strange for Foisy’s counterexample to be the only one, but at

the current time it is the only minor-minimal one known to exist. In searching for classes of graphs

for which this conjecture holds true, we might find some other counterexamples.

We begin with a simple class of graphs, the complete partite graphs. Once we’ve finished with

complete partite graphs, we could next consider graphs that are complete partite with one edge

removed, then two edges removed and so on. To this point, I have proven the conjecture for complete

partite graphs, and I believe that if one were to explore further, patterns would emerge that would

simplify the problem greatly, and perhaps allow us to solve the problem in general, thus providing

us a way to find all graphs for which the conjecture holds. Foisy’s counterexample graph is 18 edges

away from being a complete tri-partite graph. So somewhere between complete, and 18 edges away

from complete, something very interesting must happen that causes the conjecture to fail.
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2.3 Complete Partite Graphs

My proof of the conjecture for complete partite graphs begins by first categorizing all complete

partite graphs with respect to intrinsic linking and intrinsic knotting. Although complete partite

graphs are an infinite collection of graphs, we can classify them all with respect to intrinsic linking

and knotting by use of this fairly intuitive lemma.

Lemma 1 Any expansion of an intrinsically linked (respectively knotted) graph will also be intrin-

sically linked (respectively knotted)[MRS98].

Proof: (Sketch)

The proof of this lemma follows from the definition of expansion. Since an expansion will never

destroy a closed cycle, and we know our initial graph contains a link (respectively knot) in every

embedding, the graph resulting from the expansion will also contain that same link (respectively

knot) and will therefore be intrinsically linked (respectively knotted).�

The contrapositive of this lemma is also very useful, it states that any minor of a graph which

is not intrinsically linked (respectively knotted) will also not be intrinsically linked (respectively

knotted).

Notice that adding one vertex to any part of a complete partite graph yields an expansion of that

graph, for example, K6,5 is an expansion of K5,5. Similarly, removing a vertex from a part results in

a minor of that graph, for example, K3,2,1 is a minor of K3,3,1. Therefore, with this lemma in hand,

it is possible to create a finite list of minor minimal complete partite graphs with respect to intrinsic

linking and intrinsic knotting, and a finite list of maximal graphs which are not intrinsically linked

or intrinsically knotted.

Using these lists, we check each intrinsically knotted graph to see if the conjecture holds true

for that graph. To do this, consider each graph in the intrinsically knotted list, remove a vertex in

every possible way, and see if each resulting graph is intrinsically linked.
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Chapter 3

Proof

In this chapter I will state and prove my theorem. In section 1 I will provide all of the lemmas

necessary for my proof. In sections 2 and 3 I will categorize all complete partite graphs with respect

to intrinsic linking and intrinsic knotting respectively. In section 4 I will summarize sections 2 and

3 in 2 charts. And finally, in section 5 I will state and prove my theorem.

3.1 Lemmas

This section will begin with several lemmas, some of which are fairly technical. Each lemma is

important; however, some require a topological background to understand the proof. I recommend all

readers examine the statement of each lemma; however, those with little to no topological background

should feel free to skip the proofs.

I will begin with several well known theorems, which I will state without proof. I have followed

Rolfsen [R90] for much of this section. Especially the beginning of this section will look intimidating

to someone who hasn’t taken topology. I advise such a reader to skip ahead to the lemmas as the

ideas of these theorems are fairly intuitive perhaps coming back as necessary.

Theorem 3 (Jordan Curve Theorem) If J is a simple closed curve in R2, then R2 - J has two

components, and J is the boundary of each.

Theorem 4 (The Schönflies Theorem) If J is a simple closed curve in R2, then the closure of

one of the components of R2 − J is homeomorphic with the unit disk.

Remark: We’ll refer to the disk as the “inside” of the curve.
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Theorem 5 (Kuratowski’s Reduction Theorem) A graph G is non planar iff G is K5 or K3,3,

or if K5 or K3,3 is a minor of G.

Definition 39 A set A in a topological space X is closed if X\A is open.

Definition 40 K ⊂ X is compact if every open cover of K has a finite subcover. That is, if K

⊂
⋃

α∈A Uα with Uα ∈ ΩX , then ∃α1, α2, ..., αn such that K ⊂
⋃n

i=1 Uαi .

Definition 41 A ⊂ Rn is bounded if ∃−→x , r such that A ⊂ B(−→x ;r).

The proofs of lemmas 2, 3, and 4 below are all standard in an introductory topology class.

Lemma 2 In Rn K is compact iff K is closed and bounded.

Lemma 3 The continuous image of a compact set is compact.

Remark: By lemma 3, arcs and images of a graph embedding are compact sets. Since knots

and links can be thought of as images of continuous maps of S1’s, they are also compact.

Definition 42 The distance between sets A and B in Rn is the greatest lower bound of {d(p,q)| p∈A

and q∈B} where d is the usual Euclidean distance in Rn.

Lemma 4 The distance between two disjoint, non-empty, compact sets in Rn is a finite positive

number.

Lemma 5 Any knot that bounds a disk is equivalent to the unknot.

Strategy: Describe an isotopy from the given knot to the unknot. This isotopy will be broken

down into three steps. An example of the isotopy is illustrated in figure 3.1.

Proof : (sketch)

Call the given knot K, the disk bounded by that knot D, and let x be an arbitrary point in the

interior of D. Draw an arc from x to the origin. By lemma 4, there exists some r ∈ R+ such that

r < 1 and r is less than the distance between x and K. Consider a tube of radius r about the arc from

x to the origin. It’s intuitive, but hard to show, that the boundaries of the disks of radius r about x

and about the origin are equivalent to K and the unknot respectively. Also, we can easily describe

an isotopy from the disk of radius r about x to a disk of radius r about the origin by “flowing” along

the tube. Therefore, we can follow an isotopy from K, to the disk of radius r about x, to a disk of

radius r about the origin, to the unlink. So we have described an isotopy that shows K is equivalent

to the unknot. �
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Figure 3.1: Example of Isotopy in Lemma 5

Lemma 6 Any link whose components bound disjoint disks is equivalent to the unlink.

Strategy: Describe an isotopy from the given link to the unlink. This isotopy will be broken

down into three steps. The important point is that in every step, the two disks do not “interfere”

with one another. An example of the isotopy is illustrated in figure 3.2.

Figure 3.2: Example of Isotopy in Lemma 6

Proof : (sketch)

Call the 2 disks bounded by components of the link D1 and D2 with point x1 and x2 on the

interiors of D1 and D2 respectively. Draw disjoint arcs from x1 and x2 to (-1,0,0) and (1,0,0)

respectively. Since the arcs are disjoint, there must be some r ∈ R+ such that r < 1
2 and a tube of

radius r can surround each arc without any intersection between the two tubes (this is intuitively
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clear, but technically difficult to prove). The boundaries of the disks of radius r about x1 and x2

are equivalent to the boundaries of the disks D1 and D2 respectively. Similarly, the boundaries

of the disks of radius r about (-1,0,0) and (1,0,0) are equivalent to their respective components

of the unlink. Also, since the tube is of uniform radius r, we can easily describe an isotopy from

each disk’s boundary to its respective component of the unlink by simply “flowing” along the tube.

Therefore, we have described a sequence of isotopies which shows a link is equivalent to the unlink

(of 2 components) if its components bound disjoint disks. �

Lemma 7 Any two-component link completely in the plane is equivalent to the unlink (of two com-

ponents).

Proof :

Notice that each component of the link is completely in a plane. Therefore, by the Schönflies

Theorem, they each bound a disk. Also notice that the two components of the link cannot cross one

another since they are in a plane. Therefore, there are two cases. Examples of the two cases are

shown in figure 3.3.

Figure 3.3: Cases of lemma 7

Case 1:

Neither component of the link is inside the other. In this case, the two components bound disjoint

disks. Therefore, by lemma 6, we have the unlink.

Case 2:

One component is inside the other. Since there is no intersection between the two, there is

a small annulus around the inner loop that doesn’t include any of the outer loop (again, this is

intuitively clear, yet difficult to prove). Isotope space so that the inner loop moves above the plane

into a parallel plane, and everything in the plane outside the annulus is fixed. Now we have both

components of the link on separate parallel planes. Since they are each in a plane, they each bound

a disk by the Schönflies Theorem. Since they are on separate parallel planes, the two disks are

disjoint. So by lemma 6, we have the unlink. �
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Lemma 8 For any two arcs A and B in a plane with common end points x and y, there exists an

isotopy h1: R2 × [0, 1] → R2 such that h1(∗,0) = identity and h1(A,1) = B with h1(x,t) = x and

h1(y,t) = y ∀t ∈ 0 ≤ t ≤ 1. Moreover, given any neighborhood N of the closure of A∪B, h1 can be

chosen so that h1(z,t) = z ∀ t, and ∀ points z outside N.

Proof : (Sketch)

Case 1) Arcs A and B have no points of intersection aside from x and y.

Figure 3.4: Description of Isotopy for Case 1

Figure 3.4 is an example of what is described below.

Notice that A∪B is a simple closed curve in the plane, so it bounds a disk, D1, by the Schönflies

Theorem. Also consider the simple closed curve E where E is disjoint from D1 and ∀e ∈E, d(e,A ∪

B)=ε, for a sufficiently small ε ∈ R+ (such an ε exists, however, it is difficult to prove that it exists).

It follows intuitively, yet it is hard to prove that there exists a homeomorphism H1: R2 → R2 such

that H1(D1) = D2 and H1(x) and H1(y) are antipodal. We define A2, B2, E2, x2, and y2 such that

A2 = H1(A), B2 = H1(B), E2 = H1(E), x2 = H1(x), and y2 = H1(y). Let ε2=min{glb{d(z,A2∪B2)|

z ∈ E2},1}. Now there is an isotopy, h2: R2 × [0, 1] → R2 such that h2(A2, 1) = B2, h2(B2, 1) is

inside the interior of E2, and h2(z, t) = z for z outside E2. Namely, beginning at any point z on

A2, isotope the plane so that z goes to B2 along a path perpendicular to the line connecting x2

and y2. Consider any point b2 ∈ B2 and the line perpendicular to the line connecting x2 and y2

and containing b2. That line will intersect A2 at one point, call it a2. This isotopy will move b2

along that line, away from A2 a distance of ε22
4∗d(a2,b2)

if d(a2,b2) ≥ ε2
2 and d(a2,b2) if d(a2,b2) ≤ ε2

2 .

Now the isotopy is defined on A2 and B2, we can easily extend that to the entire plane. Notice

that for every point in b ∈ B2, h2(b,1) is inside the interior of E2. Define an isotopy of the plane

h1 = H1
−1 ◦ h2 ◦ H1, notice that h1(A, 1) = B and that h1(B,1) is inside the interior of E. Also
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h1(z,t)=z for z outside E. Given any neighborhood N of A∪B, we can choose ε so E is inside N.

Case 2) Arcs A and B have a finite number n points of intersection. Label the points of intersec-

tion, beginning with the one closest to x along A x1, x2, ..., xn. Label the curve along A between x

and x1 A1, label the curve along A between xi−1 and xi Ai, and label the curve along A between xn

and y An+1. In the same way, along curve B, name segments B1, B2, ..., Bn+1. Each Aj is isotopic

to each Bj with endpoints fixed by case 1, so A is equivalent to B.

Case 3) Arcs A and B have an infinite number of points of intersection. Since we are only

considering tame embeddings, we can first isotope to produce a finite number of intersections. Now

we can apply case 2, and we are done. �

Notation: Kn + G is an operation on a graph G, sometimes called suspension, which adds n

vertices that are all connected to one another and to every vertex in G.

Lemma 9 K1 + G is intrinsically linked iff G is non-planar. (first proved by Sachs [S84]).

Proof :

(=⇒)

Assume K1 + G is intrinsically linked. For a contradiction, assume G is planar. Consider the

embedding where G is in a plane, K1 is above the plane, and each edge connecting K1 to the plane

is a straight line. Notice that any 2 cycles that are completely in G are not linked by lemma 7. For

the remaining links, one component, A, must contain K1, while the remaining component, B, must

be completely in the plane of G. In this case the component A containing the K1 vertex comes down

into the plane, follows some path AG in the plane, and then comes back up to the K1 point. By

lemma 8, there exists an isotopy, h, of the plane of G such that h(AG,1) is a straight line in the plane

of G. Moreover, h can be extended to an isotopy of R3 that fixes the edges of A that are incident

to K1. Since the two edges of A that are above the plane of G are straight lines, and h(AG,1) is a

straight line, the pieces of h(A,1) form a triangle, and therefore are in a plane P. Since h(AG,1) and

h(B,1) are images of cycles in a graph, they must be disjoint compact sets by lemma 3. By lemma

4 the distance between h(AG,1) and h(B,1) is d∈ R+. So, if we construct a rectangle in the plane

of G around h(AG,1) so that the distance from each point on the rectangle to h(AG,1) is less than

or equal to d
2 , the interior of that rectangle will not intersect h(B,1). There exists an isotopy of R3

that will move h(AG,1) above the plane of G and parallel to plane P, while leaving any points in the

plane of G outside the rectangle unchanged. The result is one component completely in the plane of

G, one component completely in plane P and above the plane of G. Therefore the disks bounded by
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the two components are disjoint. By lemma 6, this link is equivalent to the unlink. It follows that

there are no non-trivial links in this embedding of the graph, a contradiction. Therefore, G must be

non-planar.

(⇐=)

Assume G is non-planar. By Kuratowski’s reduction theorem, G must contain K3,3 or K5 as a

minor.

Case 1) G has K3,3 as a minor, so G + K1 has K3,3,1 as a minor. K3,3,1 is one of the graphs

pictured in figure 1.17 and is therefore intrinsically linked by theorem 2. So by lemma 1, G + K1 is

intrinsically linked.

Case 2) G has K5 as a minor, then G + K1 has K6 as a minor which is intrinsically linked by

theorem 1, so by lemma 1, G + K1 is intrinsically linked. �

Lemma 10 Any graph that is intrinsically knotted is also intrinsically linked.

This was proven by Robertson, Seymour, and Thomas [RST95]. I will omit the proof as it is

about 40 pages long. A summary is available in [RST93].

Lemma 11 K2 + G is intrinsically knotted iff G is non-planar (Theorem 2.1 in [Fl]).

Remark: Notice that adding K2 to a partite graph will add 2 parts, each with one vertex. For

example, K2,2 + K2 is K2,2,1,1.

Proof :

(=⇒) Assume K2 + G is intrinsically knotted. For a contradiction, assume G is planar. Call

the 2 vertices of K2 a and b. Consider an embedding with G in a plane, a above the plane, b below

the plane, and each edge connecting a or b to a vertex in the plane a straight line. Also, notice that

edge (a, b) must pass through the plane of G somewhere. By lemma 3, G is compact, and so, by

lemma 2, it is bounded in the plane. Assume that in our embedding, edge (a, b) passes through the

plane of G at exactly one point c which is outside of a bounded region containing G. Also assume

the part of edge (a, b) between a and c is a straight line, and the part of edge (a, b) between b and c

is also a straight line. I will show that no cycle within this graph is knotted. There will be 4 cases:

1) a cycle completely in the plane, 2) a cycle using exactly one of a or b, 3) a cycle using a and b,

that doesn’t use edge (a, b), and 4) a cycle using a and b and edge (a, b).

Case 1) Any cycle completely in a plane is a simple closed curve. So by the Schönflies Theorem,

it is the boundary of a disk, and is therefore the unknot by lemma 5.
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Case 2) In this case, our cycle uses exactly 1 of the vertices a or b, the rest of the vertices of the

cycle are in a plane. By lemma 8 there exists an isotopy of the plane of G such that the path of our

cycle through the plane is a straight line. This extends to an isotopy of R3 which sends our cycle

to 3 straight lines segments. Thus, the image is in a plane so it bounds a disk by the Schönflies

Theorem, and is therefore equivalent to the unknot by lemma 5.

Case 3) Strategy: we will describe an isotopy that will move our cycle into a plane.

A cycle in this case uses vertices a and b without using edge (a, b). In the cycle vertex a is

connected to 2 vertices in the plane, call them a1 and a2. Similarly, b is connected to 2 vertices in

the plane, call them b1 and b2, where a1 and a2 are connected to b1 and b2 respectively through a

series of edges in the plane or a1 = b1 ( or respectively, a2=b2). Let γb1,a1 and γb2,a2 be our arcs from

b1 to a1 and b2 to a2 respectively. Since γb1,a1 and γb2,a2 are not closed paths, plane\(γb1,a1 ∪ γb2,a2)

is connected. Therefore, there exists an arc γa1,a2 in the plane disjoint from γb1,a1 and γb2,a2 except

for endpoints. It follows that γb1,a1 ∪ γa1,a2 ∪ γa2,b2 is a non-self-intersecting arc which is not closed.

Since this arc is not closed, plane\(γb1,a1 ∪ γa1,a2 ∪ γa2,b2) is connected, so there exists an arc γb2,b1

that only intersects γb1,a1 ∪ γa1,a2 ∪ γa2,b2 at endpoints. Therefore, γb1,a1 ∪ γa1,a2 ∪ γa2,b2 ∪ γb2,b1 is

a simple closed curve in the plane, therefore it bounds a disk by Schönflies Theorem, so by lemma

5, it is the unknot.

By lemma 8, there exists an isotopy h1 of the plane of G such that h1(γb1,b2 ,1) is a straight

line. Moreover, h1 can be extended to an isotopy of R3 such that edges (b, b1) and (b, b2) remain

straight. Since edge (b, b1) and edge (b, b2) are straight lines, they describe a triangle and are

therefore in a plane; call it B. So by lemma 8, there exists a homeomorphism of plane B such that

h2((b1, b)∪ (b, b2),1) is in the plane of G. Similarly, we can describe a homeomorphism h3 such that

h3((a1, a)∪(a, a2),1) is in the plane of G. Note, there is a possibility that B will meet edges (a, a1) or

(a, a2) so they’re no longer straight lines after h2. We can avoid this by first isotoping (a, a1)∪(a, a2)

into a plane parallel to B.

Now, if we in tern apply h1, h2, and h3, our cycle will be completely in the plane of G. So by

the Schönflies Theorem, our cycle bounds a disk; therefore by lemma 5, it is the unknot.

Case 4) Notice that the edge (a, b) must pass through the plane of G. Recall that the point of

intersection is c. Now if we consider the argument for case 3, and let c be γb2,a2 , then case 4 reduces

to case 3 and is therefore proven.

(⇐=) Assume G is non-planar. By Kuratowski’s reduction theorem, G must contain K3,3 or K5

as a minor.

26



Case 1) G has K3,3 as a minor, so G + K2 has K3,3,1,1 as a minor, K3,3,1,1 was shown to be

intrinsically knotted in [F02], so by lemma 1, G + K2 is intrinsically knotted.

Case 2) G has K5 as a minor, so G + K2 has K7 as a minor, K7 was shown to be intrinsically

knotted in [CG83], so by lemma 1, G + K2 is intrinsically knotted. �

Lemma 12 Kn1+n2,n3,...,ni is a minor of Kn1,n2,n3,...,ni.

Recall that although we usually write the parts in decending order, we can write them in any

order we like. Therefore, this lemma allows us to “combine” any two parts of a complete partite

graph to get a minor of that graph. For example, by this lemma K3,4,3 is a minor of K2,1,4,3, but

we usually write parts in decending order, so it is more natural to say K4,3,3 is a minor of K4,3,2,1.

Proof :

In Kn1,n2,n3,...,ni , delete each edge between any vertex in n1 and any vertex in n2. (By abuse of

notation, let ni denote the set of vertices in the ith part.) Now each vertex in n1∪n2 is connected to

each vertex from n3,...,ni, and no two vertices in n1∪n2 are connected to one another. By definition,

this is Kn1+n2,n3,...,ni . Therefore Kn1+n2,n3,...,ni is a minor of Kn1,n2,n3,...,ni .�

3.2 Categorizing with Respect to Intrinsic Linking

In this section, I will categorize all complete partite graphs with respect to intrinsic linking. I will

categorize them according to how many parts they have. I will also consider complete graphs. I

will begin by categorizing complete graphs, then bipartite graphs, then tripartite graphs, and so on.

This classification is an original contribution to the literature. At the beginning of each subsection,

I identify minimal intrinsically linked graphs and maximal graphs that are not intrinsically linked.

3.2.1 Complete Graphs

I will show that K6 is intrinsically linked and K5 is not intrinsically linked. Notice that all complete

graphs, Kn are covered here. If n>6 K6 is a minor of Kn so Kn is intrinsically linked by lemma 1.

Conversely, if n<5, Kn is a minor of K5 so Kn is not intrinsically linked by lemma 1.

First notice that any closed cycle requires three vertices, and a link requires at least two closed

cycles. Therefore, for a graph to be intrinsically linked, it must have at least 6 vertices. It follows

that K5 is not intrinsically linked.

By Theorem 1, K6 is intrinsically linked.
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3.2.2 Bipartite Graphs

I will show that K4,4 is intrinsically linked, and K3,3 is not intrinsically linked. Notice that any cycle

in a bipartite graph must use an equal number of vertices from each part. Therefore, any graph

of the form Km,n with m ≥ n will behave exactly like Kn,n with respect to intrinsic linking (and

intrinsic knotting). So only graphs of the form Kn,n need to be considered. If n > 4, Kn,n contains

K4,4 and is intrinsically linked. If n < 3, Kn,n is a minor of K3,3 and is not intrinsically linked.

Also, any cycle in a bipartite graph must include at least two vertices from each part. To see

this, consider beginning at vertex a1 in part A. The first edge of the path will be to vertex b1 in

part B. Our next edge will be to vertex a2 in part A which is necessarily different from a1. There

is no edge between vertices a1 and a2 since they are in the same part, so to get to a1 from a2 we

must first travel to another vertex in B. We now follow an edge from a2 to b2 which is necessarily

different from b1, and finally we can follow an edge from b2 to a1 or we can continue further to get

a cycle of more than 4 vertices.

Since each cycle requires at least 2 vertices from each part, and a link requires 2 cycles, for

intrinsical linking, a graph will require at least 4 vertices in each part, so K3,3 is not intrinsically

linked.

K4,4-{e} is a Petersen graph, as shown in figure 1.17, so by theorem 2 and lemma 1, K4,4 is

intrinsically linked.

3.2.3 Tripartite Graphs

I will show that K3,3,1 and K4,2,2 are intrinsically linked, and K3,2,2 and Kn,2,1 are not intrinsically

linked. Note that if Ka,b,c is not one of these 4 graphs, it is either a minor of K3,2,2 or Kn,2,1, or

else it contains K3,3,1 or K4,2,2 as a minor. Although I will no longer state it, this idea will carry

through in each characterization section.

As shown in figure 3.5, Kn,2 is planar, so by lemma 9, Kn,2,1 is not intrinsically linked.

As shown in figure 3.5, K2,2,2 is planar, so by lemma 9, K2,2,2,1 is not intrinsically linked. By

lemma 12, K3,2,2 is a minor of K2,2,2,1. So by lemma 1, K3,2,2 is not intrinsically linked.

K3,3,1 is a Petersen graph as shown in figure 1.17, so it is intrinsically linked by theorem 2. In

subsection 3.2.2, we showed that K4,4 is intrinsically linked. By lemma 12, K4,4 is a minor of K4,2,2,

so by lemma 1, K4,2,2 is intrinsically linked.
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Figure 3.5: Planar Embeddings of Kn,2 and K2,2,2

3.2.4 4 partite graphs

I will show that K2,2,2,2 and K3,2,1,1 are intrinsically linked, and K2,2,2,1 and Kn,1,1,1 are not intrin-

sically linked.

As shown in figure 3.5, K2,2,2 is planar, so by lemma 9, K2,2,2,1 is not intrinsically linked.

As illustrated in figure 3.6, Kn,1,1 is planar, so by lemma 9, Kn,1,1,1 is not intrinsically linked.

Figure 3.6: A Planar Embedding of Kn,1,1

In subsection 3.2.3, we showed that K4,2,2 is intrinsically linked. By lemma 12, K4,2,2 is a minor

of K2,2,2,2, so by lemma 1, K2,2,2,2 is intrinsically linked.

Similarly, in subsection 3.2.3, we showed that K3,3,1 is intrinsically linked. By lemma 12, K3,3,1

is a minor of K3,2,1,1, so by lemma 1, K3,2,1,1 is intrinsically linked.
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3.2.5 5 partite graphs

I will show that K2,2,1,1,1 and K3,1,1,1,1 are intrinsically linked and K2,1,1,1,1 is not intrinsically

linked.

As illustrated in figure 3.7, K2,1,1,1 is planar, so by lemma 9 K2,1,1,1,1 is not intrinsically linked.

Figure 3.7: A Planar Embedding K2,1,1,1

In subsection 3.2.4 we showed that K3,2,1,1 is intrinsically linked. By lemma 12, K3,2,1,1 is a

minor of both K2,2,1,1,1 and K3,1,1,1,1. So by lemma 1, K2,2,1,1,1 and K3,1,1,1,1 are both intrinsically

linked.

3.2.6 k Partite Graphs (k ≥ 6)

Every complete partite graph with six or more parts is intrinsically linked.

Every complete partite graph with six or more parts will either be K1,1,1,1,1,1, or have it as a

minor. But K1,1,1,1,1,1 is six vertices all connected to one another, which is also called K6. We have

shown that K6 is intrinsically linked in subsection 3.2.1, so by lemma 1, any complete partite graph

with 6 or more parts is intrinsically linked.

3.3 Categorizing with Respect to Intrinsic Knotting

In this section I will categorize all complete partite graphs with respect to intrinsic knotting in

the same manner as I categorized them with respect to intrinsic linking in the previous section.

Although Flemming was the first to do this [Fl], we independently came up with the same results.
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Rather than follow his proof, I present our own argument below. In each subsection, we present

minimal intrinsically knotted examples and maximal examples that are not intrinsically knotted.

3.3.1 Complete Graphs

I will show that K7 is intrinsically knotted and K6 is not intrinsically knotted.

As shown in figure 3.8, K4 is planar, so by lemma 11, K6 is not intrinsically knotted.

Figure 3.8: A Planar Embedding of K4

By Kuratowski’s Reduction Theorem, K5 is non-planar, so by lemma 11, K7 is intrinsically

knotted. (This was first proven by Conway and Gordon [CG83]).

3.3.2 Bipartite Graphs

As was shown in [S88], K5,5 is intrinsically knotted. I will show that K4,4 is not intrinsically knotted.

Recall from section 3.2.2 that we need only consider bipartite graphs of the form Kn,n.

As shown in section 3.2.3, Kn,2 is planar, so K4,2 is planar. So by lemma 11, K4,2,1,1 is not

intrinsically knotted. Therefore, by lemmas 12 and 1, K4,4 is not intrinsically knotted.

3.3.3 Tripartite Graphs

I will show that K3,3,3, K4,3,2, and K4,4,1 are intrinsically knotted, and that K3,3,2, Kn,2,2 and Kn,3,1

are not intrinsically knotted.

K3,3,1,1 is minor minimal with respect to intrinsic knotting [F02]. By lemma 12 K3,3,2 is a minor

of K3,3,1,1, so by the definition of minor minimal, K3,3,2 is not intrinsically knotted.

Kn,2 is planar, as shown in figure 3.5. So Kn,2,1,1 is not intrinsically knotted by lemma 11. So

by lemmas 12 and 1, Kn,2,2 is not intrinsically knotted.
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Kn,1,1 is planar, as pictured in subsection 3.2.4. So Kn,1,1,1,1 is not intrinsically knotted by

lemma 11. So by lemmas 12 and 1, Kn,3,1 is not intrinsically knotted.

Next I will show that K3,3,3 is intrinsically knotted by showing that a minor of it is intrinsically

knotted.

The first graph in figure 3.9, labeled H9 is shown to be intrinsically knotted in [KS92]. Add the

dashed edges in the second picture to arrive at the resulting graph, which is seen to be K3,3,3 in the

third picture. We have shown that H9 is a minor of K3,3,3, so by lemma 1, K3,3,3 is intrinsically

knotted.

Figure 3.9: H9 is a Minor of K3,3,3

Similarly, I will now show that K4,3,2 is intrinsically knotted by showing it has K3,3,1,1 as a

minor.

As stated above, K3,3,1,1 is intrinsically knotted [F02]. As illustrated in figure 3.10, K3,3,1,1 is a

minor of K4,3,2, so by lemma 1, K4,3,2 is intrinsically knotted.

I will now show that K4,4,1 is intrinsically knotted by showing it has K3,3,1,1 as a minor. We

begin with K3,3,1,1 and the knowledge that it is intrinsically knotted. As illustrated in figure 3.11,

we split the vertex d into vertices d1 and d2 such that d1 is connected to the vertices labeled a and

d2 is connected to the vertices labeled b and c. Also recall that when you split a vertex, the resulting

vertices are connected to one another, so d1 is connected to d2. Then, add an edge, illustrated with

the dashed line, between vertices d1 and the one previously labeled c. In the third picture, it is clear

that the resultant graph is K4,4,1. So it has been shown that K3,3,1,1 is a minor of K4,4,1. By lemma

1, K4,4,1 is intrinsically knotted.
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Figure 3.10: K3,3,1,1 is a Minor of K4,3,2

Figure 3.11: K3,3,1,1 is a Minor of K4,4,1

3.3.4 4 Partite Graphs

I will show that K3,2,2,2, K4,2,2,1, and K3,3,1,1 are intrinsically knotted and K2,2,2,2, K3,2,2,1, and

Kn,2,1,1 are not intrinsically knotted.

K2,2,2 is planar as shown in figure 3.5, so by lemma 11, K2,2,2,1,1 is not intrinsically knotted. By

lemma 12, K2,2,2,2 is a minor of K2,2,2,1,1, so by lemma 1, K2,2,2,2 is not intrinsically knotted.

Similarly, since K2,2,2,1,1 is not intrinsically knotted, by lemmas 12 and 1, K3,2,2,1 is not intrin-

sically knotted.

As shown in figure 3.5, Kn,2 is planar, so Kn,2,1,1 is not intrinsically knotted by lemma 11.

Recall from subsection 3.3.3 that K4,3,2 is intrinsically knotted. By lemma 12, K4,3,2 is a minor

of K4,2,2,1, so by lemma 1, K4,2,2,1 is intrinsically knotted.
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I will now show that K3,2,2,2 is intrinsically knotted by showing that it has K3,3,1,1 as a minor.

As shown in figure 3.12, we start with K3,3,1,1 which is intrinsically knotted. Split the leftmost

vertex labeled b into vertices b1 and b2. Recall that b1 and b2 are connected, and each vertex that

was connected to b must now be connected to either b1 or b2. Connect each vertex labeled a or

d to b1 and connect vertex c to b2. Now add edges which are represented by dashed lines. The

resulting graph is K3,2,2,2. In this way, we have shown that K3,3,1,1 is a minor of K3,2,2,2, so by

lemma 1, K3,2,2,2 is intrinsically knotted. Note that in the accompanying picture, crossings were left

out because the picture was getting cluttered. Since we are considering intrinsic knotting, which is

embedding independent, it is irrelevant which edge is below and which is above.

Figure 3.12: K3,3,1,1 is a Minor of K3,2,2,2

3.3.5 5 Partite Graphs

I will show that K2,2,2,2,1 and K3,2,1,1,1 are intrinsically knotted and K2,2,2,1,1 and Kn,1,1,1,1 are not

intrinsically knotted.

By figures 3.5 and 3.6, K2,2,2 and Kn,1,1 are planar. So by lemma 11, K2,2,2,1,1 and Kn,1,1,1,1

are not intrinsically knotted.

Recall from subsection 3.3.4 that K4,2,2,1 is intrinsically knotted. By lemma 12, K4,2,2,1 is a

minor of K2,2,2,2,1, so by lemma 1, K2,2,2,2,1 is intrinsically knotted.

As mentioned many times, K3,3,1,1 is intrinsically knotted. By lemma 12, K3,3,1,1 is a minor of

K3,2,1,1,1, so by lemma 1, K3,2,1,1,1 is intrinsically knotted.
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3.3.6 6 Partite Graphs

I will show that K2,2,1,1,1,1 and K3,1,1,1,1,1 are intrinsically knotted and K2,1,1,1,1,1 is not intrinsically

knotted.

As shown in figure 3.7, K2,1,1,1 is planar, so by lemma 11, K2,1,1,1,1,1 is not intrinsically knotted.

K2,2,1,1 and K3,1,1,1 each contain K3,3 as a minor by lemma 12, therefore, they are each non-

planar by Kuratowski’s Reduction Theorem. So by lemma 11, K2,2,1,1,1,1 and K3,1,1,1,1,1 are intrin-

sically knotted.

3.3.7 k Partite Graph (k ≥ 7)

I will show that every complete partite graph with 7 or more parts is intrinsically knotted.

Every complete partite graph with seven or more parts is K1,1,1,1,1,1,1 or contains it as a minor.

But K1,1,1,1,1,1,1 is seven vertices all connected to one another, which is also called K7. We have

shown that K7 is intrinsically knotted in subsection 3.3.1, so by lemma 1, any complete partite

graph with 7 or more parts is intrinsically knotted.

3.4 Summarizing

All of the information in the previous two sections can be summarized into tables, one for linking

and one for knotting. In each table, the top row is the number of parts, the second row is the minor

minimal intrinsically linked (respectively knotted) complete partite graphs. The third row is the

maximal complete partite graphs which are not intrinsically linked (respectively knotted).

In conjunction with lemma 1, these tables allow us to determine intrinsic knotting and intrinsic

linking of all complete partite graphs. For example, a 3-partite graph Ka,b,c that is not in the

intrinsic linking chart will either contain K3,3,1 or K4,2,2 as a minor and be intrinsically linked, or it

will be a minor of K3,2,2 or Kn,2,1 and not be intrinsically linked. Similarly, Ka,b,c that is not in the

intrinsic knotting chart will either contain K3,3,3, K4,3,2, or K4,4,1 as a minor and be intrinsically

knotted, or it will be a minor of K3,3,2, Kn,2,2, or Kn,3,1 and not be intrinsically knotted. For

example K5,2,1,1 contains K3,2,1,1 and is intrinsically linked, and K5,2,1,1 is an example of Kn,2,1,1

and is therefore not intrinsically knotted.
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k 1 2 3 4 5 ≥ 6
linked 6 4,4 3,3,1 2,2,2,2 2,2,1,1,1 All

4,2,2 3,2,1,1 3,1,1,1,1
not linked 5 n,3 3,2,2 2,2,2,1 2,1,1,1,1 None

n,2,1 n,1,1,1

Table 3.1: Intrinsic Linking of Complete Partite Graphs.

k 1 2 3 4 5 6 ≥ 7
knotted 7 5,5 3,3,3 3,2,2,2 2,2,2,2,1 2,2,1,1,1,1 All

4,3,2 4,2,2,1 3,2,1,1,1 3,1,1,1,1,1
4,4,1 3,3,1,1

not knotted 6 4,4 3,3,2 2,2,2,2 2,2,2,1,1 2,1,1,1,1,1 None
n,2,2 3,2,2,1 n,1,1,1,1
n,3,1 n,2,1,1

Table 3.2: Intrinsic knotting of k-partite graphs.

3.5 My Theorem

Theorem 6 If G is an intrinsically knotted complete partite graph, the removal of any vertex will

result in a graph that is still intrinsically linked.

Strategy:

I will show that for each graph which is knotted according to the second table, we can remove

any one vertex and the resulting graph will either be in the list of intrinsically linked graphs, or it

will contain one of those graphs as a minor. I will show this one part at a time.

Proof :

(k=1)

K7 is intrinsically knotted, removing any vertex results in K6, which is intrinsically linked.

(k=2)

K5,5 is intrinsically knotted, removing any vertex results in K5,4. Since K4,4 is intrinsically

linked, and K4,4 is a minor of K5,4, by lemma 1 K5,4 is intrinsically linked.

(k=3)

K3,3,3 is intrinsically knotted, removing any vertex results in K3,3,2. K3,3,2 contains K3,3,1 as a

minor which is intrinsically linked. So K3,3,2 is intrinsically linked by lemma 1.
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K4,3,2 is intrinsically knotted, removing any vertex results in K4,3,1, K4,2,2, or K3,3,2. K4,2,2 is

intrinsically linked by the intrinsically linked table, K4,3,1 and K3,3,2 both have K3,3,1 as a minor

which is intrinsically linked, so both are intrinsically linked by lemma 1.

K4,4,1 is intrinsically knotted, removing any vertex results in K4,4 or K4,3,1. K4,4 is in the

intrinsically linked table, and K4,3,1 contains K3,3,1 as a minor which is intrinsically linked, so K4,3,1

is intrinsically linked by lemma 1.

(k=4)

K3,2,2,2 is intrinsically knotted, removing any vertex results in K3,2,2,1 or K2,2,2,2. K2,2,2,2 is

intrinsically linked by the table, and K3,2,2,1 contains K3,2,1,1 as a minor which is intrinsically

linked, so by lemma 1, K3,2,2,1 is intrinsically linked.

K4,2,2,1 is intrinsically knotted, removing any vertex results in K4,2,2, K4,2,1,1, or K3,2,2,1. K4,2,2

is intrinsically linked according to the table, and K4,2,1,1 and K3,2,2,1 both contain K3,2,1,1 as a

minor which is intrinsically linked, so by lemma 1, K4,2,1,1 and K3,2,2,1 are intrinsically linked.

K3,3,1,1 is intrinsically knotted, removing any vertex results in K3,3,1 or K3,2,1,1, both of which

are intrinsically linked by the table.

(k=5)

K2,2,2,2,1 is intrinsically knotted, removing any vertex results in K2,2,2,2 or K2,2,2,1,1. K2,2,2,2 is

in the intrinsically linked table, while K2,2,2,1,1 contains K2,2,1,1,1 as a minor which is intrinsically

linked, so by lemma 1 K2,2,2,1,1 is intrinsically linked.

K3,2,1,1,1 is intrinsically knotted, removing any vertex results in K3,2,1,1, K3,1,1,1,1, or K2,2,1,1,1,

all of which are in the intrinsically linked table.

(k=6)

K2,2,1,1,1,1 is intrinsically knotted, removing any vertex results in K2,2,1,1,1 or K2,1,1,1,1,1, both

of which are in the intrinsically linked table.

K3,1,1,1,1,1 is intrinsically knotted, removing any vertex results in K3,1,1,1,1 or K2,1,1,1,1,1, both

of which are in the intrinsically linked table.

(k ≥ 7)

All graphs with 7 or more parts are intrinsically knotted, removing a vertex will always result in

a graph with 6 or more parts, which will be intrinsically linked according to the table. �
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