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Abstract. We prove that for 2–bridge knots, the diameter, D, of the set of
boundary slopes is twice the crossing number, c. This constitutes part of a
proof that, for all Montesinos knots in S3, D ≤ 2c. In addition, we characterize

the 2–bridge knots with four or fewer boundary slopes and show that they each
have a boundary slope of genus two or less. We also present examples of knots
in S3 with D > 2c. We propose questions that explore a possible connection

between the number of boundary slopes and slopes of small genus.
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CHAPTER 1

Introduction

In this chapter, we give an introduction to 2–bridge or rational knots, crossing
numbers, and boundary slopes. We will conclude this chapter with an overview of
the thesis.

1. Introduction to Knot Theory

This section will contain a brief introduction to knot theory. For a more detailed
discussion, see [1].

In colloquial terms, a knot is any closed loop in space. This can be imagined
as a rope or cord which has been tangled and looped around itself, and then had
its two loose ends attached to each other. See Figure 1.1 for an example of a knot.

Figure 1.1. A Trefoil knot.

As long as we don’t break the rope or detach the ends, then we can perform any
contortions or further tanglings on the knot that we wish, and we will say that we
still have the same knot. A projection of a knot is a 2–dimensional representation
of a knot. For a given projection of a knot, each time the “arcs” of the knot cross
over each other, they form a crossing with an overarc and an underarc. See Figure
1.2 for an example of transforming a projection of the Figure–8 knot into another
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2. Tangles

projection of the same knot. Note that, though the knot appears very similar,
overarcs and underarcs have been swapped at each crossing.

Figure 1.2. Transforming a projection of the Figure–8 knot with
4 crossings, into another projection.

2. Tangles

A tangle, as defined in [1], is a region within a knot projection where we can
draw a circle which intersects the knot in precisely four places (Figure 1.3). The
four points of intersection are said to be at the four compass directions of NW, NE,
SW, and SE. The next section will describe rational tangles. All of the tanlges in
Figure 1.3 are rational tangles.

Figure 1.3. Three examples of tangles.
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3. Rational Knots

3. Rational Knots

Rational knots, also called 2–bridge knots, are knots which can be drawn in the
form of Figure 1.4. These are called 2–bridge knots because they can be repre-
sented as in the figure with exactly two local maxima or “bridges” as at the top
of the figure. They are called rational knots because of a connection with rational
numbers, which will be discussed later.

Figure 1.4. The general form of a 2–bridge knot.

John H. Conway [2] studied these and other types of knots, and developed
a notation which we call the Conway notation for describing these knots. The
Conway notation is developed from a slightly different representation of rational
knots than that of the above figure. I will borrow on the description in [1] of how
to form rational tangles. First, we must define “positive” and “negative” twists.
A “positive” twist is a twist in which the overarc passes from SW to NE and the
underarc passes from NW to SE, as in Figure 1.5.

We begin with the so-called 0 tangle, which consists of two horizontal strings.
We then “twist” the two strings at right together to form b1 crossings, where a
positive b1 indicates positive crossings and negative b1 indicates negative crossings.
Next, we reflect the tangle about the NW to SE line, and then twist the two
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3. Rational Knots

Figure 1.5. “Positive” and “Negative” twists.

rightmost strands b2 times. We continue reflecting across the NW to SE line and
twisting bi times. Then we connect the bottom strands to each other, and the top
strands to each other. The bi sequence we’ve generated is the Conway notation of
this knot. See Figure 1.6 for an example of forming the 3 3 4 rational knot.

Figure 1.6. Forming of the 3 3 4 rational tangle and knot.
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4. Crossing Number

Interestingly, two Conway notations may represent the same underlying knot.
For example, the 3 3 4 knot described above can also be obtained from the Conway
notation −2 2 −5 2 −2 2. This will be discussed in more detail later.

4. Crossing Number

Recall that a knot crossing in a projection is a place where the knot crosses
itself. The crossing number of a knot K, denote c(K), is defined as the minimum
number of crossings among all projections of the knot. For an example, see Figures
1.7 and 1.8.

Figure 1.7. From top left to lower right, c(K) = 0, 3, 4, 5, 5

Figure 1.8. c(K) = 4 for both projections of the Figure–8 knot

An alternating knot projection is a knot projection in which, if we travel along
the knot, we alternate between over-crossings and under-crossings.

A reduced knot projection is a knot projection in which no crossings are re-
ducible, where a reducible crossing is defined as a crossing for which there exists
a circle which intersects the crossing once, but does not intersect the knot any-
where else. Reducible crossings are those that can be removed by a single twist.
Thistlethwaite [21], Kauffman [9] and Murasugi [16][17] independently proved the
first Tait conjecture, which states that a reduced alternating projection of a knot
yields the crossing number.

In general, determining the crossing number of a knot can be quite difficult. In
fact, even with rational knots where we know the Conway notation, it’s not imme-
diately apparent how to determine the crossing number. Every rational knot has a
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6. Essential Surfaces

Conway notation which consists of all positive integers, as we will see below. It is
evident that such an “all-positive” Conway notation produces a reduced, alternat-
ing projection, and by the first Tait conjecture, the crossing number for a rational
knot is simply the sum of the terms of this “all-positive” Conway notation [10][4].
It is then a question of determining this all-positive Conway notation, and this is
where the connection between rational knots and rational numbers comes in. To
describe this connection, we will first introduce the notion of continued fractions.

5. Continued Fractions

A continued fraction expansion of p

q
is a fraction of the form

p

q
= c +

1

b0 + 1
b1+

1

···+ 1
bn

= [c; b0, b1, . . . , bn],

where c ∈ Z and each bi, for 0 ≤ i ≤ n, is a nonzero integer. The bi are called
partial quotients or terms. The simple continued fraction of p

q
is the unique one

having all terms positive. We will also require bn > 1 for all simple continued
fractions where p/q /∈ Z for the sake of uniqueness, since [c; b0, b1, . . . , bn−1, 1] =
[c; b0, b1, . . . , bn−1 + 1].

Continued fractions are related to rational knots in surprisingly direct way.
Given the Conway notation b1b2 . . . bn for a rational knot K, we can calculate a
continued fraction by reversing the Conway notation: [0; bn, bn−1, . . . , b2, b1] = p

q
.

We then denote this knot as K(p/q). Schubert [19] showed that two rational knots
K(p/q) and K(p′/q′) are equivalent if and only if q = q′ and p′ ≡ p±1 mod q.
Hence, for any given knot K(p′/q), there exists an equivalent knot K(p/q) where
0 ≤ p < q (i.e. 0 ≤ p/q < 1). It follows that every rational knot has some projection
in which the Conway notation consists only of positive integers, which leads us to
the crossing number of the knot.

6. Essential Surfaces

In this section, we will provide an informal introduction to essential surfaces for
knots, and describe the algorithm for producing Seifert surfaces. For more details,
see [11]. Essential surfaces are surfaces whose boundary is (possibly several parallel
copies of) a given knot. Although essential surfaces are, in general, difficult to
visualize, Herbert Seifert discovered a simple algorithm for constructing an oriented
surface from a knot projection. We call these surfaces Seifert surfaces. They are
examples of essential surfaces and the following is a description of the algorithm.

To produce a Seifert surface for a particular knot and projection of that knot,
we first assign an orientation to the projection. See figure 1.9 for an example.
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6. Essential Surfaces

Figure 1.9. An oriented Figure–8 knot.

At each crossing of the knot are four strands in total. Due to the orientation,
two strands will be “incoming” which will be connected to two “outgoing” strands.
We then ”cross-connect” each incoming strand with the outgoing strand adjacent
to it – that is, the outgoing strand to which it was not previously connected. By
doing this, we break the link into a set of oriented discs (Figure 1.10).

Figure 1.10. Incoming and outgoing strands cross-connected.

Lastly, connect each of the discs to discs they were originally connected to using
a band with a half-twist in the same manner that they were originaly crossing.
When done, the surface will look very much like the original knot. Indeed, the
boundary of this surface is the orginal knot. And the Seifert surface will be oriented
(that is, it will have two distinct sides) (Figure 1.11).

Figure 1.11. Oriented Seifert surface for the Figure–8 knot.
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8. Example of Calculating Boundary Slopes

Essential surfaces raise the notion of boundary slopes, which describe the way
essential surfaces intersect the boundary torus, which is simply a thickened version
of the knot. Boundary slopes are pairs of integers, often represented as either an
ordered pair or, as throughout this paper, a rational number. In general, essential
surfaces and boundary slopes are not easy to determine. However, for 2–bridge
knots, it is known that the boundary slopes will always be even integers. Further-
more, there is a relatively simple method for computing the boundary slopes, which
we describe in the following section.

7. Boundary Slopes of 2–Bridge Knots

In this section we review Hatcher and Thurston’s [5] method for computing the
boundary slopes of a 2–bridge knot. Let K(p

q
) denote the 2–bridge knot associated

to the fraction p

q
. Recall that the equivalence relationship between rational knots

allows us to assume that 0 ≤ p

q
< 1. As p

q
= 0 corresponds to the unknot, we will

often further assume that 0 < p

q
< 1.

The various types of boundary surfaces, and the slopes at which they intersect
the knot, are difficult to imagine. However, with rational knots, it is very easy
to calculate the boundary slopes. Following [5], to calculate the boundary slopes
associated with a rational knot, we must first determine all continued fraction
representations of that knot where |bi| ≥ 2 for each i. These are called the boundary
slope continued fractions. Among the boundary slope continued fractions, there
will always be a unique one having all bi of even parity, which we call the longitude
continued fraction. This is the slope of the Seifert surface described in the last
section.

We then, for each boundary slope continued fraction, compare the partial quo-
tients to the pattern [+ − + − · · · ]. The number of terms matching this pattern
we call n+, and the number of terms not matching this pattern (i.e., the total
number of terms minus n+) we call n−; note that these terms match the pattern
[− + − + · · · ].

In this way, we associate to each continued fraction two non-negative integers
n+ and n−. The boundary slope is then given by comparing the difference n+−n−

with that corresponding to the longitude: n+
0 − n−

0 ; the boundary slope associated
with the continued fraction is 2

[

(n+ − n−) −
(

n+
0 − n−

0

)]

. Applying this calcula-
tion to every boundary slope continued fraction gives the set of boundary slopes
B(K) = B. B is a finite set of even integers. The diameter D(K) = D is the
difference between the biggest and smallest elements of B.

8. Example of Calculating Boundary Slopes

In this section, we provide an example of calculating the boundary slopes for
K(10/34), the knot formed by Conway notation 3 3 4. For an illustration of this
knot, see Figure 1.12.
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9. Results

Figure 1.12. K(10/34)

The longitude continued fraction for this knot is 10/34 = [0; 4, 4,−2, 2]. The
other boundary slope continued fractions can be calculated as the simple continued
fraction[0; 4, 3, 3], plus [0, 5,−2, 2,−4], [1;−2, 2,−2, 4, 3], and [1;−2, 2,−2, 5,−2, 2].
Below, we list these continued fractions with their associated n+ and n−.

[0; 4, 4,−2, 2] ⇒ n+
0 = 1 n−

0 = 3
[0; 4, 3, 3] ⇒ n+ = 2 n− = 1
[0, 5,−2, 2,−4] ⇒ n+ = 4 n− = 0
[1;−2, 2,−2, 4, 3] ⇒ n+ = 1 n− = 4
[1;−2, 2,−2, 5,−2, 2] ⇒ n+ = 0 n− = 6

We now calculate the set of boundary slopes from the above data using 2
[

(n+ − n−) −
(

n+
0 − n−

0

)]

:

n+ = 1 n− = 3 ⇒ 2 [(1 − 3) − (1 − 3)] = 0
n+ = 2 n− = 1 ⇒ 2 [(2 − 1) − (1 − 3)] = 6
n+ = 4 n− = 0 ⇒ 2 [(4 − 0) − (1 − 3)] = 12
n+ = 1 n− = 4 ⇒ 2 [(1 − 4) − (1 − 3)] = −2
n+ = 0 n− = 6 ⇒ 2 [(0 − 6) − (1 − 3)] = −8

Therefore, we get D(K(10/34)) = [−8,−2, 0, 6, 12].

9. Results

Ichihara [6] told us of a conjecture; he and Mizushima have since proved [7]
the conjecture, though they refer to our result for part of the proof. Let K be a
Montessinos knot in S3. Let D(K) denote the diameter of the set of boundary
slopes of K, and let c(K) be the crossing number of K.

Theorem. For K a Montesinos knot in S3, D(K) ≤ 2c(K).

Since 0, being the slope of a Seifert surface, is always included in the set
of boundary slopes, we have, as an immediate consequence, a conjecture due to
Ishikawa and Shimokawa [8]:

Theorem. Let b be a finite boundary slope for K a Montesinos knot in S3.
Then |b| ≤ 2c(K).
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10. Map of Thesis

It is easy to verify this result for the torus knots. For the unknot, D(K) = 0 =
2c(K). For a non-trivial torus knot K of type (p, q) we can assume p, q relatively
prime with 2 ≤ q < p. The boundary slopes are 0 and pq [15, 22] while the crossing
number is c(K) = pq−p [18]. Thus, D(K) = pq ≤ pq+p(q−2) = 2c(K). Moreover,
we have equality for the torus 2–bridge knots, which are of the form (p, 2) with p
odd.

We will show that this equality obtains for all 2–bridge knots, and hence all
Montesinos knots with fewer than 3 components:

10. Map of Thesis

In Chapter 1, we provided an introduction to knot theory, continued fractions,
and the basic tools required to understand the rest of this paper, and stated our
results. Chapter 2 will contain several lemmas and theorems, culminating in the
proof of our results, and several corollaries. It will also contain proofs of several
corollaries.

Theorem 1. For K a 2–bridge knot, D(K) = 2c(K).

Corollary 1. Let b be a boundary slope for a 2–bridge knot K. Then |b| ≤
2c(K).

Theorem 2. The boundary slope continued fractions of K(p/q) are among the
continued fractions obtained by applying substitutions at non-adjacent positions in
the simple continued fraction of p/q.

Corollary 2. If p

q
= [0, a0, a1, . . . , an] is a simple continued fraction, then

K(p/q) has at most Fn+2 boundary slopes where Fn is the nth Fibonacci number.

Theorem 3. Let K = K(p/q) be a 2–bridge knot.

• If K has only two distinct boundary slopes, then K is a torus knot and
p = 1 or p = q − 1.

• If K has precisely three boundary slopes, then p|(q ± 1) or (q − p)|(q ± 1).
• If K has precisely four boundary slopes, then one of the following holds:

p|(q + 1), (q − p)|(q + 1), (p ± 1)|q, or (q − p ± 1)|q.

Chapter 3 will then discuss open questions pertaining to our results.
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CHAPTER 2

Proving Results

In this chapter, we will provide the theorems and their proofs. We begin by
stating our primary result, and proceed by proving prerequisite results. We will
then prove Theorem 1 and several corollaries and supplementary results.

Theorem 1. For K a 2–bridge knot, D(K) = 2c(K).

Corollary 1. Let b be a boundary slope for a 2–bridge knot K. Then |b| ≤
2c(K).

This bound is sharp for the (p, 2) torus knots and there are many examples
showing that it is also sharp for hyperbolic 2–bridge knots. Such examples are
given by 2–bridge knots that are “checkerboard;” an alternating knot K is called
checkerboard if it possesses a reduced alternating diagram such that one of the
checkerboard surfaces is an essential Seifert surface for K. In this case, the boundary
slope b of the other checkerboard surface satisfies the equality in Corollary 1.

In Section 2 of this chapter, we present two substitution rules for continued
fractions. These substitution rules will allow us to produce all possible boundary
slope continued fractions for a given rational number:

Theorem 2. The boundary slope continued fractions of K(p/q) are among the
continued fractions obtained by applying substitutions at non-adjacent positions in
the simple continued fraction of p/q.

The proof of Theorem 2 is presented in Section 3 along with the following
corollary, originally proved by Hatcher and Thurston [5].

Corollary 2. If p

q
= [0, a0, a1, . . . , an] is a simple continued fraction, then

K(p/q) has at most Fn+2 boundary slopes where Fn is the nth Fibonacci number.

In Section 4 we show how to compare the boundary slopes obtained from dif-
ferent substitution patterns. This allows us to identify the patterns corresponding
to the maximum and minimum boundary slopes and thereby to prove Theorem 1.

In Section 5 we characterize the 2–bridge knots that have no more than four
boundary slopes.

Theorem 3. Let K = K(p/q) be a 2–bridge knot.

• If K has only two distinct boundary slopes, then K is a torus knot and
p = 1 or p = q − 1.

• If K has precisely three boundary slopes, then p|(q ± 1) or (q − p)|(q ± 1).
• If K has precisely four boundary slopes, then one of the following holds:

p|(q + 1), (q − p)|(q + 1), (p ± 1)|q, or (q − p ± 1)|q.

Note that the torus knots are also the only 2–bridge knots with a genus 0
boundary slope (see [5, Theorem 2(a)]). Thus, the set of 2–bridge knots admitting
a genus 0 boundary slope exactly coincides with those having two boundary slopes.
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1. Continued Fraction Identities

The situation for genus 1 and 2 boundary slopes is similar. Using [5] (see also
[20]) the genus of a k-sheeted surface carried by a continued fraction [0, b0, b1, . . . bn]
is g = (2 + k(n − 1))/2 which is 1 only if n = 1. In other words, the 2–bridge
knots having a genus 1 boundary slope are exactly the trefoil knot along with the
hyperbolic knots for which p | (q ± 1) or (q − p) | (q ± 1). Thus, if a 2–bridge knot
has exactly three boundary slopes, then it has a genus 1 boundary slope. Similarly,
if K(p/q) has exactly four boundary slopes, then it has a boundary slope of genus
2 or less.

The converses of these statements are not quite true. For example, a knot with
a genus 1 boundary slope may have four boundary slopes (and not just three), e.g.,
K(4/11) has boundary slopes −4, 0, 2, 8, the last being of genus 1. Still, this
suggests the following:

Question: If the knot K has a boundary slope of small genus, does it follow that
K has few boundary slopes? Conversely, do few boundary slopes imply a slope of
small genus?

That is, does the pattern we observe for 2–bridge knots persist beyond genus
2? What if we consider more general classes of knots?

1. Continued Fraction Identities

In this section, we provide two continued fraction identities and their straight-
forward proofs. Let N0 = N ∪ {0} and Q∗ = Q \ {0}. We will use the notation
(b0, . . . , bm)c to mean that the pattern “b0, . . . , bm” is repeated c times, with c being
any nonnegative integer, e.g., [0, (−2, 2)2] = [0,−2, 2,−2, 2] and [0, (−2, 2)0, 2] =
[0, 2]. Note that [b0, . . . , bm, p/q] = [b0, . . . , bm, a0, . . . , an] where p/q = [a0, . . . , an].

Identity 1. Let c ∈ N0 and k ∈ Q∗. Then

[(−2, 2)c, k] =
2ck + 2c + k

1 − 2ck − 2c

Note that the denominator becomes zero only in the case where the continued
fraction does not represent a rational number.

Proof. We proceed by induction on c.
Base Case (c = 0): [k] = k = 2·0·k+2·0+k

1−2·0·k−2·0 .

Induction Step: Assume that [(−2, 2)c, k] = 2ck+2c+k
1−2ck−2c

. Then

[(−2, 2)c+1, k] = −2 +
1

2 + 1
[(−2,2)c,k]

= −2 +
1

2 + 1
2ck+2c+k

1−2ck−2c

= −2 +
2ck + 2c + k

2cl + 2c + 2k + 1

=
−2ck − 2c − 3k − 2

2ck + 2c + 2k + 1

=
2(c + 1)k + 2(c + 1) + k

1 − 2(c + 1)k − 2(c + 1)

¤
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2. Continued Fraction Substitution Rules

Identity 2. Let c ∈ N0 and k ∈ Q∗. Then

[(2,−2)c, k] =
2ck − 2c + k

2ck − 2c + 1

Again, note that the denominator becomes zero only in the case where the
continued fraction does not represent a rational number.

Proof. We proceed with two cases based on c.
Case 1 (c = 0): [k] = k = 2·0·k−2·0+k

2·0·k−2·0+1

Case 2 (c > 0): Note that [(2,−2)c, k] = [2, (−2, 2)c−1,−2, k]. Apply Identity
1. ¤

2. Continued Fraction Substitution Rules

In this section, we will prove four identities, or substitution rules, which will
be used to derive equal continued fractions. As we will illustrate at the end of the
section, these substitutions can be used to derive all the boundary slope continued
fractions of K(p/q) from the simple continued fraction of p/q. We conclude the
section with an example to illustrate how these rules can be applied to a specific
continued fraction.

Throughout this section, let N0 = N ∪ {0} and Z∗ = Z \ {0}.

Substitution 1. Let n ∈ N. Let b0 ∈ Z and b1 ∈ N. If n = 2 then
let b2 ∈ Z \ {0,−1}. If n ≥ 3 then let bi ∈ Z∗ for all 2 ≤ i ≤ n. Then
[b0, 2b1, b2, b3, . . . , bn] = [b0 + 1, (−2, 2)b1−1,−2, b2 + 1, b3, b4, . . . , bn]. In particu-
lar, [b0, 2b1, b2] = [b0 + 1, (−2, 2)b1−1,−2, b2 + 1].

Proof. We will prove this substitution rule in three parts.
Case 1 (n = 1): We want to show that [b0, 2b1] = [b0 + 1, (−2, 2)b1−1,−2].

[b0 + 1, (−2, 2)b1−1,−2]

= b0 + 1 +
1

2(b1−1)(−2)+2(b1−1)+(−2)
1−2(b1−1)(−2)−2(b1−1)

(Apply Identity 1)

= b0 + 1 +
−2b1 + 1

2b1

= b0 +
1

2b1
= [b0, 2b1]

Case 2 (n = 2): We want to show that [b0, 2b1, b2] = [b0+1, (−2, 2)b1−1,−2, b2+
1].

[b0 + 1, (−2, 2)b1−1,−2, b2 + 1]

= b0 + 1 +
1

2(b1−1)(
−2b2−1

b2+1
)+2(b1−1)+

−2b2−1

b2+1

1−2(b1−1)
−2b2−1

b2+1
−2(b1−1)

(Apply Identity 1)

= b0 + 1 +
b2 − 2b1b2 − 1

2b1b2 + 1

= b0 +
1

2b1b2+1
b2

= b0 +
1

2b1 + 1
b2

= [b0, 2b1, b2]

13



2. Continued Fraction Substitution Rules

Case 3 (n > 2): We want to show that [b0, 2b1, b2, . . . , bn] = [b0+1, (−2, 2)b1−1,−2, b2+
1, b3, b4. . . . , bn]. Let R = [b3, b4, . . . , bn].

[b0 + 1, (−2, 2)b1−1,−2, b2 + 1, b3, b4. . . . , bn]

= b0 + 1 +
1

2(b1−1)(
−2Rb2−R−2

Rb2+R+1
)+2(b1−1)+

−2Rb2−R−2

Rb2+R+1

1−2(b1−1)
−2Rb2−R−2

Rb2+R+1
−2(b1−1)

(Apply Identity 1)

= b0 + 1 +
Rb2 − 2b1 − R − 2Rb1b2 + 1

R + 2b1 + 2Rb1b2

= b0 +
1

R+2b1+2Rb1b2
Ra2+1

= b0 +
1

2b1 + R
Rb2+1

= b0 +
1

2b1 + 1
b2+

1
R

= [b0, 2b1, b2, b3, . . . , bn]
¤

Substitution 2. Let n ∈ N. Let b0 ∈ Z and b1 ∈ N0. If n = 2 then let b2 ∈
Z\{0, 1}. If n ≥ 3 then let bi ∈ Z∗ for all 2 ≤ i ≤ n. Then [b0,−2b1, b2, b3, . . . , bn] =
[b0−1, (2,−2)b1 , b2−1, 2, b3, b4, . . . , bn]. In particular, [b0,−2b1, b2] = [b0−1, (2,−2)b1 , 2, b2−
1].

Proof. This proof will be conducted in three parts, analagous to the proof of
Substitution 1.

Case 1 (n = 1): We want to show that [b0,−2b1] = [b0 − 1, (2,−2)b1−1, 2].
[b0 − 1, (2,−2)b1−1, 2]

= b0 − 1 +
1

2(b1−1)(2)−2(b1−1)+(2)
2(b1−1)(2)−2(b1−1)+1

(Apply Identity 1)

= b0 − 1 +
2b1 − 1

2b1

= b0 +
1

−2b1
= [b0,−2b1]

Case 2 (n = 2): We want to show that [b0,−2b1, b2] = [b0−1, (2,−2)b1−1, 2, b2−
1].

[b0 − 1, (2,−2)b1−1, 2, b2 − 1]

= b0 − 1 +
1

2(b1−1)(
2b2−1

b2−1
)−2(b1−1)+

2b2−1

b2−1

2(b1−1)
2b2−1

b2−1
−2(b1−1)+1

(Apply Identity 1)

= b0 − 1 +
2b1b2 − b2 − 1

2b1b2 − 1

= b0 +
1

2b1b2−1
−b2

= b0 +
1

−2b1 + 1
b2

= [b0,−2b1, b2]

Case 3 (n > 2): We want to show that [b0,−2b1, b2, . . . , bn] = [b0−1, (2,−2)b1−1, 2, b2−
1, b3, b4. . . . , bn]. Let R = [b3, b4, . . . , bn].
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2. Continued Fraction Substitution Rules

[b0 − 1, (2,−2)b1−1, 2, b2 − 1, b3, b4. . . . , bn]

= b0 − 1 +
1

2(b1−1)(
2Rb2+2−R

Rb2+1−R
)+2(b1−1)+

2Rb2+2−R

Rb2+1−R

1−2(b1−1)
2Rb2+2−R

Rb2+1−R
−2(b1−1)

(Apply Identity 1)

= b0 − 1 +
Rb2 − R − 2b2 − 2Rb1b2 − 1

2b1 − R + 2Rb1b2

= b0 +
1

R−2b1−2Rb1b2
Ra2+1

= b0 +
1

−2b1 + R
Rb2+1

= b0 +
1

−2b1 + 1
b2+

1
R

= [b0,−2b1, b2, b3, . . . , bn]
¤

Substitution 3. Let n ∈ N. Let b0 ∈ Z and b1 ∈ N0. If n = 2 then let b2 ∈ Z\
{0,−1}. If n ≥ 3 then let bi ∈ Z∗ for all 2 ≤ i ≤ n. Then [b0, 2b1+1, b2, b3, . . . , bn] =
[b0 + 1, (−2, 2)b1 ,−b2 − 1,−b3,−b4, . . . ,−bn]. In particular, [b0, 2b1 + 1, b2] = [b0 +
1, (−2, 2)b1 ,−b2 − 1].

Proof. We will prove this substitution rule in three parts.
Case 1 (n = 1): We want to show that [b0, 2b1 + 1] = [b0 + 1, (−2, 2)b1 ].

[b0, 2b1 + 1]
= [b0, 2b1, 1]

= [b0 + 1, (−2, 2)b1−1,−2, 2] (Apply Substitution 1)

= [b0 + 1, (−2, 2)b1 ]

Case 2 (n = 2): We want to show that [b0, 2b1+1, b2] = [b0+1, (−2, 2)b1 ,−b2−
1].

[b0 + 1, (−2, 2)b1 ,−b2 − 1]

= b0 + 1 +
1

2b1(−b2−1)+2b1+(−b2−1)
1−2b1(−b2−1)−2b1

(Apply Identity 2)

= b0 + 1 +
−2b1b2 − 1

2b1b2 + b2 + 1

= b0 +
1

2b1b2+b2+1
b2

= b0 +
1

2b1 + 1 + 1
b2

= [b0, 2b1 + 1, b2]
Case 3 (n > 2): We want to show that [b0, 2b1 + 1, b2, . . . , bn] = [b0 +

1, (−2, 2)b1 ,−b2 − 1,−b3,−b4. . . . ,−bn]. Let R = [b3, b4, . . . , bn]. Note −R =
[−b3,−b4, . . . ,−bn].
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2. Continued Fraction Substitution Rules

[b0 + 1, (−2, 2)b1 ,−b2 − 1,−b3,−b4. . . . ,−bn]

= b0 + 1 +
1

2b1(
Rb2+R+1

−R
)+2b1+

Rb2+R+1

−R

1−2b1(
Rb2+R+1

−R
)−2b1

(Apply Identity 2)

= b0 + 1 +
−R − 2b1 − 2Rb1b2

2b1 + R + Rb2 + 2Rb1b2 + 1

= b0 +
1

2b1+R+Rb2+2Rb1b2+1
1+Rb2

= b0 +
1

2b1 + 1 + R
Rb2+1

= b0 +
1

2b1 + 1 + 1
b2+

1
R

= [b0, 2b1 + 1, b2, b3, . . . , bn]
¤

Substitution 4. Let n ∈ N. Let b0 ∈ Z and b1 ∈ N0. If n = 2 then let b2 ∈ Z\
{0, 1}. If n ≥ 3 then let bi ∈ Z∗ for all 2 ≤ i ≤ n. Then [b0,−2b1−1, b2, b3, . . . , bn] =
[b0 − 1, (2,−2)b1 ,−b2 + 1,−b3,−b4, . . . ,−bn]. In particular, [b0, 2b1 + 1, b2] = [b0 +
1, (−2, 2)b1 ,−b2 − 1].

Proof. We will prove this substitution rule in three parts.
Case 1 (n = 1): We want to show that [b0,−2b1 − 1] = [b0 − 1, (2,−2)b1 ].

[b0,−2b1 − 1]
= [b0,−2b1,−1]

= [b0 − 1, (2,−2)b1−1, 2,−2] (Apply Substitution 2)

= [b0 − 1, (2,−2)b1 ]

Case 2 (n = 2): We want to show that [b0,−2b1−1, b2] = [b0−1, (2,−2)b1 ,−b2+
1].

[b0 − 1, (2,−2)b1 ,−b2 + 1]

= b0 − 1 +
1

2b1(−b2+1)−2b1+(−b2+1)
1+2b1(−b2+1)−2b1

(Apply Identity 2)

= b0 − 1 +
2b1b2 − 1

2b1b2 + b2 − 1

= b0 +
1

−2b1b2−b2+1
b2

= b0 +
1

−2b1 − 1 + 1
b2

= [b0,−2b1 − 1, b2]
Case 3 (n > 2): We want to show that [b0,−2b1 − 1, b2, . . . , bn] = [b0 −

1, (2,−2)b1 ,−b2 + 1,−b3,−b4. . . . ,−bn]. Let R = [b3, b4, . . . , bn]. Note −R =
[−b3,−b4, . . . ,−bn].
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3. Proof of Theorem 2

[b0 − 1, (2,−2)b1 ,−b2 + 1,−b3,−b4. . . . ,−bn]

= b0 − 1 +
1

2b1(
−Rb2+R−1

R
)−2b1+

−Rb2+R−1

R

1+2b1(
−Rb2+R−1

R
)−2b1

(Apply Identity 2)

= b0 − 1 +
−R + 2b1 + 2Rb1b2

2b1 − R + Rb2 + 2Rb1b2 + 1

= b0 −
1

−2b1+R−Rb2−2Rb1b2+1
1+Rb2

= b0 −
1

−2b1 − 1 + R
Rb2+1

= b0 −
1

−2b1 − 1 + 1
b2+

1
R

= [b0,−2b1 − 1, b2, b3, . . . , bn]
¤

2.1. An example of the application of the Substitutions. Let us illus-
trate how the above results can be used to generate a list of all boundary slope
continued fractions starting from the simple continued fraction. As an exam-
ple, suppose we start with [0, 2a, 2b + 1, 2c], where a, c ∈ N and b ∈ N0. By
applying Substitution 1, we can immediately derive another continued fraction:
[1, (−2, 2)a−1,−2, 2b+2, 2c]. We will refer to this as applying Substitution 1 at posi-
tion 0 as it is the a0 term, 2a, that has been replaced by the sequence −2, 2, . . . ,−2.

Applying the same substitution at position 2, we get [1, (−2, 2)a−1,−2, 2b +
3, (−2, 2)c−1,−2]. We could continue on this path, but it is easy to see that any
further substitutions will result in a ±1 term. Therefore, we return to the original
sequence and use Substitution 3 (at position 1) to obtain [0, 2a+1, (−2, 2)b,−2c−1].
Finally, applying Substitution 1 at position 2, we have [0, 2a, 2b+2, (−2, 2)c−1,−2].

Thus, there are five boundary slope continued fractions that can be derived from
the simple continued fraction [0, 2a, 2b + 1, 2c]: three obtained by substitutions at
positions 0, 1, and 2; one by substitutions at 0 and 2; and the original continued
fraction itself (with no substitutions). These are precisely the fractions obtained
by applying substitutions at non-adjacent positions.

Note that when a substitution is applied at position i, the element ai is replaced
by (ai − 1) ±2’s and the adjacent terms ai−1 and ai+1 both have their magnitude
increased by one. We will return to these observations when proving Theorem 1.

3. Proof of Theorem 2

In this section we will prove Theorem 2, that the boundary slope continued frac-
tions are among the fractions obtained by applying substitutions at non-adjacent
positions in the original simple continued fraction. Our strategy is to first review
Langford’s argument [11] that the boundary slopes are determined by the leaves
of a binary tree. We then show, by induction, that applying substitutions at non-
adjacent positions accounts for all the leaves of the tree.

3.1. The boundary slope binary tree. Before we can prove Theorem 2, we
must first state a lemma. The straightforward proof by induction may be found in
Langford [11] which is also the source for the following definition: the kth subex-
pansion of [c; a0, . . . , an] is the continued fraction [0, ak, . . . , an] where 0 ≤ k ≤ n.
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3. Proof of Theorem 2

Lemma 1. Let [c; a0, . . . , an] be a boundary slope continued fraction, that is,
|ai| ≥ 2 (0 ≤ i ≤ n). Then every subexpansion r of [c; a0, . . . , an] satisfies |r| < 1.

As Langford [11] has shown, a complete list of boundary slope continued frac-
tions for K(p/q), where 0 < p/q < 1, can be calculated by means of a binary tree.
We will now outline the creation of this binary tree which follows from Lemma 1.

The root vertex is labeled with the fraction p

q
and the two edges coming from

the root are labeled 0 = ⌊p

q
⌋ and 1 = ⌈p

q
⌉. At every other vertex in the tree, we

arrive with the first k terms in a continued fraction for p

q
and a rational number

r representing the (k − 1)st subexpansion. The k terms are found as labels of the
edges of the tree starting from the root and continuing to the vertex in question.
We label the vertex with r. Since, by Lemma 1, any kth subexpansion is less than
one in absolute value, we know that the next term in the continued fraction, ak−1,
is within 1 of 1/r: |ak−1 − 1/r| < 1. However, ak−1 is an integer. Therefore, ak−1

is either the floor ⌊1/r⌋ or the ceiling ⌈1/r⌉ of 1/r. If 1/r is not an integer, there
will be two edges coming out of the vertex, one labeled with ⌊1/r⌋, and the other
labeled with ⌈1/r⌉. Since |r| < 1, neither of these arrows is 0. If either is ±1, we
terminate that edge with a leaf labeled “∄” to indicate that this path does not lead
to a boundary slope continued fraction. (When we refer to the leaves of the binary
tree below, we will be excluding these “dead” leaves.) If 1/r is an integer, then,
there is only one edge coming out of the vertex. Label the edge with 1/r and label
the leaf vertex at the end of this edge with the continued fraction expansion for p

q

given by the labels of the edges from the root to the leaf.
For example, Figure 2.1 shows the binary tree for the fraction 2/7 (which

corresponds to the 52 knot).
Thus, by Lemma 1, the algorithm used to construct the tree will provide all

the boundary slope continued fractions of p

q
as leaf vertices.

3.2. Binary tree from substitutions. Now, let’s prove the theorem by
showing that the leaves of Langford’s binary tree (and therefore the set of boundary
slopes) correspond to applying substitutions at non-adjacent positions in the simple
continued fraction.

Theorem 2. The boundary slope continued fractions of K(p/q) are among the
continued fractions obtained by applying substitutions at non-adjacent positions in
the simple continued fraction of p/q.

Proof. We proceed by induction on the length n of the simple continued
fraction [0, a0, a1, . . . , an].

Case 1 (n = 0): Here, p/q = 1/a0. We wish to show that the boundary slope
continued fractions are among the two continued fractions given by substituting or
not at position 0. There are three subcases. (To simplify the exposition, we will
not be considering the, very similar, trees that arise when the terms ai are negative
although they may be required as part of our induction.)

Subcase 1 (a0 = 1): In this case, the tree is shown in Figure 2.2. There are
no boundary slope continued fractions in this case. (Actually, here p

q
= 1, so we’ve

violated our assumption that p

q
< 1. Ordinarily, we would represent this knot, the

unknot, by [0] and that would also be the only boundary slope. We include this
case as it may arise as part of our induction.) Thus, it is true that all boundary
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3. Proof of Theorem 2

Figure 2.1. The boundary slope binary tree for p

q
= 2

7 (the 52 knot).

Figure 2.2. The binary tree for [0, 1].

slope continued fractions are among the two continued fractions [0, 1] and [1] given
by substituting or not at position 0.

Subcase 2 (a0 = 2a, a ≥ 1): The binary tree is shown in Figure 2.3. There
are two boundary slope continued fractions, and they are the fractions [0, a0] and
[1, (−2, 2)a,−2] given by substituting or not at position 0.

Subcase 3 (a0 = 2a + 1, a ≥ 1): The binary tree is shown in Figure 2.4. The
two boundary slope continued fractions [0, a0] and [1, (−2, 2)a] are those given by
substituting or not at position 0.

Case 2 (n = 1): Our goal is to show that the boundary slope continued
fractions are among the fractions given by substituting at position 0, at position 1,
and by not substituting at all. The result of substitution at position 0 will depend
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3. Proof of Theorem 2

Figure 2.3. The binary tree for [0, 2a].

on whether a0 is even or odd:

[0, 2a, a1]
Sub. 1
−→ [1, (−2, 2)(a−1),−2, a1 + 1]

[0, 2a + 1, a1]
Sub. 3
−→ [1, (−2, 2)a,−a1 − 1]

Similarly, substitution at position 1 depends on the parity of a1:

[0, a0, 2b]
Sub. 1
−→ [0, a0 + 1, (−2, 2)(b−1),−2]

[0, a0, 2b + 1]
Sub. 3
−→ [0, a0 + 1, (−2, 2)b]

As Figure 2.5 shows, these two boundary slopes, along with the original contin-
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3. Proof of Theorem 2

Figure 2.4. The binary tree for [0, 2a + 1].

ued fraction [0, a0, a1] (no substitutions) are precisely those that arise in the binary
tree. Note that if, for example, a0 or a1 is 1, then the [0, a0, a1] leaf is not in fact a
boundary slope continued fraction. The point is that all leaves of the binary tree are
included in the set of continued fractions obtained by substitutions at non-adjacent
positions. So, every boundary slope continued fraction appears in this set.

Case 3 (n = 2): This case will illustrate how the induction works. There are
five continued fractions given by substitutions at non-adjacent positions (compare
with the example of Section 2.1 of this chapter): three obtained by substitutions
at positions 0, 1, and 2; one by substitutions at 0 and 2; and the original continued
fraction itself (with no substitutions). Let us denote these choices of substitutions
by a sequence of three 0’s and 1’s where a 1 in the ith place denotes a substitution
at that ith position. Thus, the five continued fractions will be denoted 100, 010,
001, 101, and 000.

We can think of the binary tree (Figure 2.6) as being a union of two subtrees.
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3. Proof of Theorem 2

Figure 2.5. The binary tree for [0, a0, a1].

The one at left corresponds to making no substitution at position 0. This subtree
ends in the three boundary slopes which have: no substitutions (000); substitution
at position 1 (010); and substitution at position 2 (001), i.e., the sequences that
begin in 0. This subtree is essentially the same as that for the [0, a1, a2] continued
fraction (compare Figure 2.5) as we can obtain these three sequences by adding
a 0 at the front of the three boundary slopes sequences 00, 10, and 01 of that
case. The other subtree corresponds to making a substitution at position 0 and
no substitution at position 1. This subtree contains the remaining two boundary
slopes: substitution at position 0 (100); and substitution at positions 0 and 2 (101),
i.e., sequences that begin in 10. This subtree is similar to that for [0, a2] (compare
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3. Proof of Theorem 2

Figure 2.6. The [0, a0, a1, a2] tree is a union of two subtrees.

Figure 2.3) as it remains only to decide whether or not to substitute in the second
position. Again, some of these five sequences may not result in a boundary slope
continued fraction, for example, if one of the ai is 1. However, every leaf of the
tree will be included in the set of continued fractions obtained by substituting at
non-adjacent positions.
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3. Proof of Theorem 2

Case 4 (n ≥ 3): As in Case 3, we can decompose the binary tree (Figure 2.7)
into two subtrees. One corresponds to sequences that begin with 0, the other to

Figure 2.7. The general case also results in two subtrees.

sequences beginning with 10. The first will be, essentially, the tree that arises from
the simple continued fraction [0, a1, a2, . . . , an]. By induction, the leaves of this
subtree correspond to non-adjacent substitutions in this simple continued fraction.
By its placement in the [0, a0, a1, . . . , an] tree, this ensures that the leaves of this
part of the tree will correspond to continued fractions obtained by substitution
sequences into [0, a0, a1, . . . , an] that begin with 0.

The other subtree is isomorphic to the tree that arises from the simple con-
tinued fraction [0, a2, a3, . . . , an]. By induction, the leaves of the subtree corre-
spond to substitutions into this continued fraction. By its placement in the tree
for [0, a0, a1, . . . , an], the leaves here can be obtained by non-adjacent substitutions
into that continued fraction that begin with 10.

Thus, every leaf of the binary tree and, therefore, every boundary slope con-
tinued fraction can be obtained by non-adjacent substitutions into the simple con-
tinued fraction.

¤

Corollary 2. If p

q
= [0, a0, a1, . . . , an] is a simple continued fraction, then

K(p/q) has at most Fn+2 boundary slopes where Fn is the nth Fibonacci number.

Proof. This result has been previously proven in [5]. We will provide an
alternative proof, based on our substituion rules. We have shown that the boundary
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4. Proof of Theorem 1

slope continued fractions lie among those given by substitution at non-adjacent
positions which in turn are in bijection with sequences of n+1 0’s or 1’s containing
no pair of consecutive 1’s. Thus the number of boundary slopes is at most Pn,
where Pn is the number of 0, 1 sequences of length n + 1 with no consecutive 1’s.
We will show that Pn = Fn+2 by induction.

There are two base cases. If n = 0, there are two sequences: 0 and 1. So,
P0 = 2 = F2. For n = 1, there are three sequences: 00, 10, and 01. So, P1 = 3 = F3.

For the inductive step, sequences of length n + 1 are obtained by either adding
a 0 to the beginning of a n sequence or 10 to the beginning of a n − 1 sequence.
Thus Pn = Pn−1 + Pn−2 = Fn+1 + Fn = Fn+2. ¤

In general, Fn+2 is an overestimate since the continued fractions obtained by
substitutions will not necessarily have terms at least two in absolute value. In
particular, if the simple continued fraction includes any 1’s, then the continued
fraction obtained by making no substitutions (000 . . . 0) will not be a boundary
slope continued fraction. Moreover, different boundary slope continued fractions
could result in the same boundary slope. For example, this will occur when, in the
simple continued fraction, we have two equal terms separated by an even distance:
ai = ai+2k.

4. Proof of Theorem 1

In this section we prove Theorem 1. We will argue that the maximum and
minimum boundary slopes are given by the substitution patterns 010101 · · · and
101010 · · · respectively. This will allow us to compare the diameter to the crossing
number.

Denote by ∂[s0s1 · · · sn] the boundary slope obtained by applying the substitu-
tion pattern s0s1 · · · sn to some simple continued fraction [c; a0, a1, . . . , an]. That
is, s0, s1, . . . , sn is a sequence of 0’s and 1’s with no adjacent 1’s. Let δ[s0s1 · · · sn]
be the n+−n− portion of this boundary slope. Clearly, if S and S′ are substitution
patterns, then ∂[S] < ∂[S′] ⇐⇒ δ[S] < δ[S′] and ∂[S] = ∂[S′] ⇐⇒ δ[S] = δ[S′].

A key observation is that, substitution at an “even” position will decrease the
value of the boundary slope. This is because, no matter which substitution is made
at position 2i, the positive number a2i (which counted towards n+) will be replaced
by a sequence of (a2i − 1) ±2’s that count towards n−. Similarly, substituting at
an “odd” position will increase the value:

Lemma 2.

∂[1] < ∂[0](1)

∂[10s2s3 · · · sn] < ∂[00s2s3 · · · sn] < ∂[01s2s3 · · · sn](2)

∂[001s3s4 · · · sn] < ∂[000s3s4 · · · sn] < ∂[010s3s4 · · · sn](3)

Moreover,

∂[t1 · · · t2n10s1 · · · sn] < ∂[t1 · · · t2n00s1 · · · sn] < ∂[t1 · · · t2n01s1 · · · sn] and

∂[t1 · · · t2n+101s1 · · · sn] < ∂[t1 · · · t2n+100s1 · · · sn] < ∂[t1 · · · t2n+110s1 · · · sn]

Proof. Equation 1: In this case, p

q
= [0, a0] and we are comparing the bound-

ary slope ∂[1] obtained by a substitution at position 0 with that ∂[0] obtained by
no substitutions.
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4. Proof of Theorem 1

Let δ[0] = n+ − n−. Then

δ[1] = (n+ − 1) − (n− + a0 − 1)

= n+ − n− − a0

< n+ − n−

= δ[0].

Equation 2: Let δ[00s2s3 · · · sn] = n+ −n−. Notice that n = 1 implies a length
two continued fraction. Then

δ[10s2s3 · · · sn] = n+ − n− − a0

< n+ − n− = δ[00s2s3 · · · sn]

< n+ − n− + a1

= (n+ + a1 − 1) − (n− − 1)

= δ[01s2s3 · · · sn].

Equation 3: Let δ[000s3s4 · · · sn] = n+−n−. Notice that n = 2 implies a length
three continued fraction. Then

δ[001s3s4 · · · sn] = n+ − n− − a2

< n+ − n− = δ[000s1s2 · · · sn]

< n+ − n− + a1

= (n+ + a1 − 1) − (n− − 1)

= δ[010s3s4 · · · sn].

The remaining two equations follow since adding the same sequence of substi-
tutions at the beginning of the continued fraction will have a similar effect on all
three of the boundary slopes. ¤

Let p

q
= [0, a0, . . . , an] be the simple continued fraction for the knot K =

K(p/q) where 0 < p/q < 1. It follows from the lemma that the minimum boundary
slope is ∂[101010 · · · ] while the maximum is ∂[010101 · · · ].

Note that these two are indeed boundary slopes; that is, each term in the
resulting continued fraction is at least two in absolute value. For example, under the
substitution 101010 · · · the even position terms a2i of the original simple continued
fraction will be replaced by a sequence of (a2i − 1) ±2’s while the terms in the
odd positions will be augmented in absolute value by at least one. Moreover, this
substitution pattern will result in a continued fraction for which all terms satisfy
the pattern [−+−+· · · ]. So, if we let n+

1 and n−

1 be the numbers used in calculating
this boundary slope, we have n+

1 = 0 while n−

1 simply counts the number of terms
in the resulting continued fraction. Again, as each a2i+1 is replaced by (a2i+1 − 1)
terms and there are ⌈n/2⌉ terms resulting from the a2i’s, we have
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5. Knots with at most four boundary slopes

n−

1 =
⌈n

2

⌉

+

⌊n

2 ⌋
∑

i=0

(a2i − 1)

=
⌈n

2

⌉

−
(⌊n

2

⌋

+ 1
)

+

⌊n

2 ⌋
∑

i=0

a2i

=

⌊n

2 ⌋
∑

i=0

a2i if n is odd

= −1 +

⌊n

2 ⌋
∑

i=0

a2i if n is even

Similarly, for ∂[101010 · · · ], n−

2 = 0 and

n+
2 =

⌊n−1

2 ⌋
∑

i=0

a2i+1 if n is odd

= 1 +

⌊n−1

2 ⌋
∑

i=0

a2i+1 if n is even

We can now prove that twice the crossing number of a 2–bridge knot K is equal
to the diameter of the boundary slopes.

Theorem 1. For K a 2–bridge knot, D(K) = 2c(K).

Proof. Let K be a 2–bridge knot with associated fraction p/q. We may
assume 0 ≤ p/q < 1. If p/q = 0, then K is the unknot and the theorem is valid in
this case. So, we will assume 0 < p/q < 1.

If [0, a0, . . . , an] = p

q
is the simple continued fraction for K, then c (K) =

∑n

i=0 ai (see [4]).

The diameter of B(K) is also easy to calculate. If we use the n−

1 and n+
2 found

above, we get D(K) = 2n+
2 −2(n+

0 −n−

0 )−
(

−2n−

1 −2(n+
0 −n−

0 )
)

= 2n+
2 +2n−

1 . At

this point, n−

1 and n+
2 may vary depending on whether n is even or odd. However,

the differences cancel each other out in either instance, leaving us with

D(K) = 2

⌊n−1

2 ⌋
∑

i=0

a2i+1 + 2

⌊n

2 ⌋
∑

i=0

a2i

= 2

n
∑

i=0

ai

This concludes the proof that 2c(K) = D(K). ¤

5. Knots with at most four boundary slopes

In this section we characterize 2–bridge knots with four or fewer boundary
slopes. We will prove Theorem 3 in two steps by first examining knots with at
most three boundary slopes and then those with four boundary slopes.
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Theorem 4. Let K = K(p/q) be a 2–bridge knot. If K has only two distinct
boundary slopes, then K is a torus knot. If K has precisely three boundary slopes,
then p|(q ± 1) or (q − p)|(q ± 1).

We will break the proof up into several lemmas which taken together imply the
theorem.

In the following, let K = K(p/q) be a 2–bridge knot where 0 < p/q < 1, p and
q are relatively prime, and p/q has simple continued fraction [0, a0, a1, . . . , an] with
an > 1. We also assume that q is odd (otherwise p/q represents a 2-bridge link
and not a knot); although this places constraints on the parity of the ai, we will
not mention these constraints explicitly. Unless otherwise stated, “K has n distinct
boundary slopes” should be taken to mean “K has precisely n distinct boundary
slopes”.

Lemma 3. K has two distinct slopes if and only if K is a torus knot.

Proof. We proceed with several cases depending on n, the length of the simple
continued fraction of p/q. Note that a 2–bridge torus knot will have fraction p/q
of the form 1/q or (q − 1)/q.

Case 1 (n = 0): p/q = [0, a0] = 1/a0. So, K is a torus knot and, by Lemma 2,
has two distinct boundary slopes ∂[0] and ∂[1].

Case 2 (n = 1): p/q = [0, a0, a1] = a1/(a0a1 + 1). This represents a torus knot
only when a0 = 1 (since a1 > 1, by assumption). When a0 = 1, we get boundary
slopes ∂[01], ∂[10], and ∂[00] is not a boundary slope (since |a0| < 2). Also, this is
a torus knot, since a1/(a1 + 1) is of the form (q − 1)/q.

Case 3 (n ≥ 2): As there are at least 3 terms, p/q is not of the form 1/q or
(q−1)/q and this is not a torus knot. Also, there are at least three distinct boundary
slopes (by Lemma 2): ∂[1010101 · · · ] < ∂[10010101 · · · ] < ∂[01010101 · · · ]. ¤

Lemma 4. If n = 1 then p|(q − 1).

Proof. p/q = [0, a0, a1] = a1/(a0a1 + 1). Note that a1|a0a1 and a0a1 =
q − 1. ¤

Lemma 5. If n = 2, then K has three distinct boundary slopes if and only if
either a0 = 1, or else a1 = 1 and a0 = a2.

Proof. By Theorem 2, there are at most five boundary slopes: ∂[000], ∂[001],
∂[010], ∂[100], and ∂[101]. Recall that ∂[S] is a boundary slope only if the sub-
stitution pattern S results in a continued fraction with each term at least two in
absolute value.

(⇒) Assume that a0 > 1 and that either a1 > 1 or a0 6= a2. By Lemma 2,
we have at least three distinct boundary slopes: ∂[101], ∂[100], and ∂[010]. We
will show that a fourth boundary slope also exists. Case 1 (a0 6= a2): In this case,
∂[001] will be a boundary slope different from ∂[100]. Indeed, using the proof of
Lemma 2, ∂[001] = ∂[000] − a2 while ∂[100] = ∂[000] − a0. ∂[001] is also different
from ∂[101] and ∂[010] (by Lemma 2).

Case 2 (a0 = a2 and a1 > 1): Since a1, a2, a3 > 1, ∂[000] is a boundary slope.
Further, by Lemma 2, it is different from ∂[100], and it is also different from ∂[101]
and ∂[010].

(⇐) Case 1 (a0 = 1): ∂[000] and ∂[001] are not boundary slopes, so K has
three distinct boundary slopes.
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5. Knots with at most four boundary slopes

Case 2 (a1 = 1 and a0 = a2): ∂[000], once again, is not a boundary slope. Also,
∂[100] = ∂[001] since a0 = a2. So K has three distinct boundary slopes. ¤

Lemma 6. If n = 2 and K has three distinct boundary slopes, then (q−p)|(q−1)
or p|(q + 1).

Proof. Since K has precisely three boundary slopes, Lemma 5 tells us that
either a0 = 1, or else a1 = 1 and a0 = a2.

Case 1 (a0 = 1): [0, 1, a1, a2] = a1a2+1
a1a2+a2+1 . Then q − p = a2, so (q − p)|(q − 1).

Case 2 (a1 = 1 and a0 = a2): [0, a0, 1, a0] = a0+1
a2
0
+2a0

= a0+1
(a0+1)2−1 , so, in this

case, p|(q + 1). ¤

Lemma 7. If n = 3 and K has three distinct boundary slopes, then (q−p)|(q+1).

Proof. First, we determine the form of the simple continued fraction given
that there are precisely three boundary slopes. Note that, by Lemma 2, there
exist at least four boundary slope continued fractions, obtained from substitution
patterns 0101, 0100, 1001, 1010. Also note that ∂[1000] must not be a boundary
slope, since, if it were, it would be different from ∂[1010], ∂[0101], and ∂[1001],
giving us a fourth boundary slope. Similarly, ∂[0010] cannot exist since it would be
different from ∂[1010], ∂[0101], and ∂[0100], also giving us a fourth boundary slope.
Therefore, since ∂[1000] isn’t a boundary slope, a2 = 1. Similarly, since ∂[0010]
isn’t a boundary slope, a0 = 1. From this, we can also conclude that ∂[0000] and
∂[0001] are not boundary slopes.

Now, we have four boundary slopes: ∂[1010], ∂[0101], ∂[1001], and ∂[0100].
In order to have only three distinct boundary slopes, we need two of these to be
equal. By Lemma 2, the only possibility is, ∂[1001] = ∂[0100]. Using the proof of
Lemma 2, we have ∂[0100] = ∂[0000] + a1 and ∂[1001] = ∂[0000] + a3 − a0. Thus,
a3 = a1 + a0 and, since a0 = 1, we have a3 = a1 + 1.

So, the simple continued fraction must be of the form [0, 1, a, 1, a + 1] = (a2 +
3a + 1)/(a2 + 4a + 3) = (a2 + 3a + 1)/((a + 2)2 − 1). Then, q − p = a + 2, and so
(q − p)|(q + 1). ¤

Lemma 8. If n ≥ 4, then K has at least four distinct boundary slopes.

Proof. When n = 4, by Lemma 2, the four boundary slopes ∂[10101], ∂[01010],
∂[10010], and ∂[10100] are all distinct. If n > 4, by appending 101010 · · · or
010101 · · · to the patterns for n = 4, we will have still have at least four distinct
boundary slopes. ¤

Theorem 4 is now proved.

Next, we investigate knots with four boundary slopes.

Theorem 5. Let K = K(p/q) be a 2–bridge knot. If K has precisely four
boundary slopes, then one of the following holds: p|(q +1), (q−p)|(q +1), (p±1)|q,
or (q − p ± 1)|q.

Proof. Case 1 (n = 2): If n = 2, then we have at most 5 boundary slopes,
yielded by substitutions ∂[000], ∂[001], ∂[010], ∂[100], ∂[101]. By Lemma 2, ∂[101] <
∂[001] or ∂[100] < ∂[000] < ∂[010], and ∂[101], ∂[010], ∂[100] must yield distinct
boundary slopes. Hence, to obtain four boundary slopes, we need either ∂[100] =
∂[001] and ∂[000] to exist, or we need ∂[000] nonexistent and ∂[100] 6= ∂[001] which
both exist. The former may only occur when a0 = a2 and a1 > 1, yielding a
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5. Knots with at most four boundary slopes

continued fraction of the form [0; a, b, a]. The latter may only occur when a0 6= a2

and a1 = 1, yielding a continued fraction of the form [0; a, 1, b].
Let a, b > 1 both be odd (to ensure p/q has odd denominator, and therefore

represents a knot rather than a link). Then [0, a, b, a] = ab+1
a((ab+1)+1 = p/q, resulting

in a fraction with (p + 1)|q.
Those of the form [0; a, 1, b] with a, b > 1, a 6= b and a, b not both even yield

the continued fraction p/q = b+1
(b+1)(a+1)−1 with p|(q + 1).

Case 2 (n = 3): If n = 3, then four substitution patterns always yield boundary
slopes: ∂[1010], ∂[1001], ∂[0100], ∂[0101], with ∂[1010] < ∂[1001], ∂[0100] < ∂[0101].
Notice that one of a0, a1, a2 must be 1 since ∂[0000] must not lead to a boundary
slope (since it would be different from at ∂[1010], ∂[1000], ∂[0101], and ∂[0100], each
of which would exist and be mutually distinct).

Subcase 1 Now we shall consider one of the cases where ∂[0100] 6= ∂[1001],
then a3 − a0 6= a1 and the remaining patterns must either not yield boundary
slopes, or must yield duplicates of the first four boundary slopes. In particular,
notice that ∂[0001] either must not yield a boundary slope or must be equal to
∂[0100]. If we assume that ∂[0001] = ∂[0100], then a0 > 1, a1 = a3, and a2 = 1
(since ∂[0000] must not exist). Similarlym ∂[0010] must either not exist (a0 > 1,
contradicting a previous assumption) or ∂[0010] = ∂[1001], leading to a3−a0 = −a2,
i.e. a0 = a3 + 1. This yields continued fractions of the form [0; a + 1, a, 1, a] with
a > 1 even in order ensure we do not have a link. This continued fraction results
in p/q = (a+1)2−1

(a+1)3 , with (p + q)|q.

Subcase 2 Assume, still, that ∂[0100] 6= ∂[1001], but that ∂[0001] does not
yield a boundary slope. Then one of a0, a1 = 1. If ∂[0010] exists, then it must be
equal to ∂[1001] as in the previous case, leading to a0 = a3 + a2, and ∂[1000] since
it would be different from ∂[0010] and ∂[1001], so a2 = 1. This yields a continued
fraction of the form [0; a + 1, 1, 1, a] = 2a+1

2(a+1)2 , which always has an even integer in

the denominator, yielding a link rather than a knot.
Subcase 3 In this case, we still assume that ∂[0100] 6= ∂[1001]. We further

assume that ∂[0010] does not exist, so that a0 = 1, and hence ∂[0000], ∂[0001]
also do not exist. Note that if ∂[0100] were to yield a boundary slope, it would
be distinct from each other existing boundary slope, so it too must not yield a
boundary slope. That is, a2 = 1. This yields a continued fraction of the form
[0; 1, a, 1, b] with b > 1 and either a even or b odd. This continued fraction yields
p/q = ab+a+b

(a+2)(b+1)−1 with (q − p)|(q + 1).

Subcase 4 We now assume the ∂[0100] = ∂[1001]. That is, a3 − a0 = a1.
Precisely one additional distinct boundary slope must exist among the substitution
patterns ∂[0000], ∂[0001], ∂[0010], ∂[1000]. Note that ∂[0010] < ∂[0100] = ∂[1001],
hence either ∂[0010] is not a boundary slope, or it yields the fourth boundary slope.
In this subcase, we will assume the latter, that ∂[0010] yields a boundary slope.
Therefore, a0 > 1. Notice that ∂[0001] must not not exist, since it would be a fifth
distinct boundary slope. Hence, a1 = 1, and ∂[0000] also does not exist. The last
substitution pattern to consider is ∂[1000]; if this pattern does not yield aboundary
slope, then a2 = 1, giving us a continued fraction [0; a− 1, 1, 1, a], which represents
a link rather than a knot. Therefore, ∂[1000] must exist, and must be equal to
∂[0010], that is a0 = a2. Since a3 − a0 = a1, we get continued fractions of the form

[0; a, 1, a, a + 1] with a even. Then p/q = (a+1)2+1
(a+1)3 , with (p − 1)|q.
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5. Knots with at most four boundary slopes

Subcase 5 We now consider the case where ∂[0100] = ∂[1001] and ∂[0010]
does not exist. Hence, a3 − a0 = a1 and a0 = 1. Thus, ∂[0000] and ∂[0001] also
do not exist. To obtain four boundary slopes, we then require thatn ∂[1000] must
exist, so a2 > 1. Note that ∂[1000] is distinct from the other existing boundary
slopes, namely ∂[1001]. Therefore, we arrive at continued fractions of the form

[0; 1, a, b, a + 1] with a even and b ≥ 3 odd. This results in p/q = a2b+ab+2a+1
(ab+b+2)(a+1) ,

with (q − p + 1)|q.

We have now verified every potential subcase for n = 3.
Case 3 (n = 4): We will show that there is only one way one way for a

two bridge knot to have exactly four boundary slopes when n = 4. Notice that
there ∂[10101] < ∂[10100] < ∂[10010], ∂[01001] < ∂[01010] all exist. Therefore, we
require ∂[10010] = ∂[01001], i.e. −a0 +a3 = a1−a4. Further, note that, if it exists,
∂[01000] would necessarily introduce a fifth boundary slope. Therefore, a3 = 1, also
rendering ∂[00000] and ∂[10000] nonexistent. Similarly, ∂[00101] would necessarily
introduce a fifth boundary slope, so a0 = 1; this also renders ∂[00100] nonexistent.
The only remaining substitution pattern is ∂[10001]. If it does not exist, then a2 = 1
and we get a continued fraction of the form [0; 1, a, 1, 1, a], which will have an even
denominator and hence does not represent a knot. Therefore, a2 > 1 and ∂[10001]
must be equal to ∂[10100], i.e. −a0 − a4 = −a0 − a2, or a2 = a4. Combining all of
these with the equality above, we have −1+1 = a1−a4 = a1−a2, or a1 = a2 = a4.
Therefore, we arrive at a continued fraction of the form [0; 1, a, a, 1, a] with a > 1

even. This yields p/q = a3+2a2+a+1
(a+1)3 . In this case, (q − p + 1)|q.

Case 4 (n = 5): In this case, we will show that there is only one simple
continued fraction of length n = 5 having exactly four boundary slopes. Note
that ∂[101010], ∂[010101], ∂[010100] and ∂[101001] will each yield distinct bound-
ary slopes, while ∂[010010], ∂[100100] and ∂[100101] yield some boundary slope.
Therefore, we must have that ∂[100100] = ∂[101001], ∂[100101] = ∂[010100], and
∂[010010] = ∂[101001]. From these, we get −a0+a3 = −a0−a2+a5, −a0+a3+a5 =
a1 +a3, and a1−a4 = −a1−a3 +a5. Rewritten, a5 = a3 +a2, a1 = a5−a0, a2 = a4.
Note that if ∂[101000] or ∂[000101] exist, then a fifth boundary slope is necessarily
introduced (they would introduce the second smallest boundary slope, where the
smallest is ∂[101010]); therefore, a0 = a2 = a4 = 1. Lastly, we consider ∂[010001],
must be equal to ∂[010100] (implying a3 = a5, a contradiction since a3 = a4 − a0),
or it must not exist (implying a3 = 1). Thus, we have a0 = a2 = a3 = a4 = 1,
and a5 = a3 + a2 = 2, and a1 = a5 − a0 = 1. Therefore, the only n = 5 simple
continued fraction with four distinct boundary slopes is 13/21 = [0; 1, 1, 1, 1, 1, 2].
Clearly, 21 − 13 − 1|21, that is q − p − 1|q.

Case 5 (n > 5): In this final case, we show that if n > 5, then at least five
distinct boundary slopes exist. First, we consider n = 5. By Lemma 2, the five
boundary slopes ∂[1010101], ∂[1010100], ∂[1010010], ∂[1001010], and ∂[0101010] are
distinct. If n > 5, by appending 101010 · · · or 010101 · · · to the patterns for n = 5,
we will have still have at least five distinct boundary slopes.

This completes the proof of Theorem 3. ¤
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CHAPTER 3

Open Questions

In this chapter, we will discuss unanswered questions regarding two–bridge
knots and their boundary slopes.

One avenue of interest is the prime factorization of p and q.

Question 1. What do the prime factorizations of p and q, for a two–bridge
knot K(p/q), tell us about the set of boundary slopes of K?

The Figure–8 knot has boundary slopes [−4, 0, 4], which is a symmetrical set
(that is, if c is a boundary slope, then so too is −c). For the Figure–8 knot, this is a
consequence of the knot being amphichiral. It is evident that any amphichiral two–
bridge knot has a symmetric set of boundary slopes, since K(−p/q) is the reflection
of K(p/q). However, K(10/63) is not amphichiral (since 10 6≡ −10 (mod 63)), yet
its boundary slopes are symmetric: [−12,−6, 0, 6, 12].

Question 2. Which two–bridge knots have symmetric sets of boundary slopes?

Note that K(1/q), q > 2 has precisely two boundary slopes, 0 and 2q, both
of which are nonnegative. Another example is K(5/31), with boundary slopes
[0, 12, 22]. There are many other examples of knots with all nonnegative boundary
slopes.

We need not necessarily look at knots with all nonpositive boundary slopes.
We need only realize that for a knot K(p/q), its reflection K(−p/q) has as its set
of boundary slopes the negation of each boundary slope of K(p/q). For example,
K(−5/31) has boundary slopes [−22,−12, 0].

Question 3. Which two–bridge knots have all boundary slopes nonnegative?

We have not as yet found an example of a knot with all boundary slopes being
positive consecutive integers. though we do have examples of two–bridge knots
with boundary slopes following other simple sequences. For example, K(3/5) has
boundary slopes [−4, 0, 4] (multiples of 4), and K(10/63) has all boundary slopes
a multiple of 6: [−12, 6, 0, 6, 12].

Question 4. Which two–bridge knots have all boundary slopes being consecu-
tive multiples of 2n for some integer n?

Question 5. Which two–bridge knots have all boundary slopes being non-
negative consecutive multiples of 2n for some integer n?
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Question 6. We characterized two–bridge knots with 4 or fewer boundary
slopes in terms of relationships between numerator and denominator. What about
knots with 5 or more boundary slopes?

In the introduction to Chapter 2, we discussed a relationship between the num-
ber of boundary slopes and the existence of a slope of small genus. For example,
we showed in Theorem 3 that if a two—bridge knot has 3 boundary slopes then it
has a genus 1 boundar slope, but the converse does not hold.

Question 7. If the knot K has a boundary slope of small genus, does it follow
that K has few boundary slopes?

Question 8. Do few boundary slopes imply a slope of small genus?

Ichihara’s relationship between crossing number and boundary slopes does not
hold for all knots. T. Mattman and Y. Kabaya found several counter–examples
among the 3–braid knots. For example, 1079 has diameter 22, and 817 has diameter
28. In each of these cases, the diameter is more than twice the crossing number. For
817, the diameter is actually more than three times the crossing number. However,
all of their calculations yield D(K) ≤ 4c(K). [12][13]

Question 9. For any knot K, is D(K) ≤ 4c(K)? If not, is there some number
n such that for any knot K, D(K) ≤ nc(k)?

Ichihara and Shimokawa also provided the result that for a finite boundary
slope b of a Montesinos knot K, |b| ≤ 2c(K). However, this relationship does not
hold for all knots. T. Mattman and Y. Kabaya found several counter–examples
among the 3–braid knots, in addition to those discussed above. For example, the
smallest boundary slope of the knot 10152 is −22, which is in absolute value larger
than 2c(K).

Question 10. For a finite boundary slope b of a knot K, is |b| ≤ 4c(K)? If
not, is there some number n such that for any knot K, D(K) ≤ nc(k)?

Two–bridge knots of few boundary slopes seem to come from knots that are
interesting in other ways. Two–bridge knots with 2 boundary slopes are comprised
of torus knots. The set of twist knots is contained within the two–bridge knots
with 3 boundary slopes.

Question 11. What, if any, characterization can be given to the two–bridge
knots with 3 boundary slopes which are not twist knots?

Question 12. What, if any, characterization can be given to the two–bridge
knots with 4 boundary slopes?
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