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Abstract

In this paper, we present an overview of elliptic curves. We give an outline of the proof that an elliptic
curve is isomorphic to a torus, and then prove our main theorem: the real points of an elliptic curve form
either a (0,1) or a (0,2) torus link. We also showed that the set of curves with complex multiplication
can yield curves with both types of link.

1 Introduction

Mathematicians have studied elliptic curves since the time of Diophantus. Most recently, they featured
in Wiles’ proof of Fermat’s Last Theorem. There are many books written on the subject, two of which
we reference (? and ?). There are many perspectives from which to study an elliptic curve, and elliptic
curves have many practical applications, including public key cryptography. In this paper, we offer a
brief overview, show that an elliptic curve is a torus, and prove our main theorem: the real part of an
elliptic curve forms either a (0,1) or a (0,2) torus link.

2 The Basics

It is best to begin by defining elliptic curve. An elliptic curve is a non-singluar projective cubic curve
in two variables. An elliptic curve in generalized Weierstrass form over C is

y2 + a2xy + a3y = x3 + a2x
2 + a4x+ a6.

We can rewrite an elliptic curve as a normalized Weierstrass equation

y2 = x3 +Ax+B,

as we will explain shortly.

A curve is non-singular if its partial derivatives are not both equal to zero at any point on the curve.
In other words, the curve always has a well defined tangent line. ( For every point on the curve, either
∂f

∂x
(P ) 6= 0 or

∂f

∂y
(P ) 6= 0, or both the partial derivatives are nonzero.) If the partials both vanish, the

tangent line at P is not well defined. In the case of a cubic curve over R, we mean that our curve does
not have a cusp (for example, y2 = x3, as in the right of figure 1), or cross over itself (for example,
y2 = x2(x+ 1), as in the left of figure 1). There are two options for a non-singluar cubic curve: it may
be all in one component,with one root (y2 = x3 − 1); or it may be in two components, with three real
roots (y2 = x3 − x). See figure 2.

Now we will explain how to normalize an elliptic curve, as outlined by (?, Ch.2). Begin with the
equation of an elliptic curve in Weierstrass form:

y2 + a2xy + a3y = x3 + a2x
2 + a4x+ a6.
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Figure 1: Singular Curves

Figure 2: Examples of non-singular curves.

If the characteristic of the field is not 2, divide by 2 and complete the square:“
y +

a1x

2
+
a3

2

”2

= x3 +
“
a2 +

a2
1

4

”
x2 +

“
a4
a1a3

2

”
x+

“a2
3

4
+ a6

”
Let y1 = y +

a1x

2
+
a3

2
. Then we can rewrite our curve with some new constants to get:

y2
1 = x3 + a′2x

2 + a′4x+ a′6.

Finally, if the characteristic of the field is also not 3, make the substitution x1 = x+
a′2
3

, and we have:

y2
1 = x3

1 +Ax1 +B,

for some new constants A and B.

3 Projective Geometry

Just like Euclidean, or affine, geometry, projective geometry has its own set of axioms.

Definition 1. Axioms for the projective plane:
1. Any line contains two distinct points
2. Any two distinct lines intersect in a unique point
3. There exist at least four points, of which no three are collinear.
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This seems just like Euclidean geometry, except for the fact that every pair of lines must intersect in
a unique point. In Euclidean geometry, parallel lines do not intersect. In projective geometry, every pair
of lines intersect.

Let’s first define the projective line, P1, before we define the projective plane, P2. We define P1 to
be the set of all directions in the affine plane. One way of describing this is as the set of all lines going
through the origin. Lines through the origin are given by the equation Ax = By. We write [A,B] to
denote this line, where A and B are real and not both zero. However, two pairs [A,B] and [A′, B′] will
give the same line if they are scalar multiples of each other. So, we can define P1 to be the set of all our
lines modulo an equivalence relation: [A,B] ∼ [A′, B′] if A = tA′ and B = tB′, t 6= 0, t ∈ R. All the lines
through the origin modulo this equivalence relation generate all the directions in the plane.

It is possible to construct the projective plane (P2) in at least two different ways. The first way is
to define it as all the lines in the regular affine plane (A2), along with an extra “line at infinity”, which
is made up of all the “points at infinity” where the parallel lines were forced to intersect, by the axiom
above. (All parallel lines of slope m in the affine plane will intersect at the point of infinity m in the
projective plane, and so on for pairs of parallel lines in the affine plane of every slope.) In this way, we
construct the projective plane as:

P2 ∼= A2 ∪ {the set of directions in A2} = A2 ∪ P1. (1)

It is straightforward to check that this construction of the projective plane satisfies the axioms in
the definition. Every pair of non-parallel lines in the affine plane will intersect in a unique point, and
every pair of lines that were parallel in the affine plane are now forced to intersect in a unique point in
the projective plane. Thus every pair of lines will intersect in a unique point. We know that lines in A2

contain two distinct points, so the same line in P2 will also contain two distinct points. The projective
line contains two distinct points, given [x, y] ∈ P1, with x 6= 0, then the point [2x, y] will be different. So
every line in in A2 ∪ P1 contains two distinct points. To find four non-collinear points, of which no three
are collinear, simply pick these points in A2, where they are already known to exist.

Now let’s define the projective plane a second way. Define the projective plane to be the set of
all triples [a, b, c], where a, b, c are real and not all zero. Let ∼ be an equivalence relation where
[a, b, c] ∼ [a′, b′, c′] if [a′, b′, c′] = [ta, tb, tc] with t ∈ R and t 6= 0. Then P2 is the set of equivalence
classes of triples, excluding [0, 0, 0].

P2 =
{[a, b, c] : a, b, c are not all zero}

∼

Proposition 1. The two definitions described above are equivalent.

Proof. To see this, construct the following pair of maps.

P2 ∼=
{[a, b, c] : a, b, c are not all zero}

∼ ↔ A2 ∪ P1

We first construct the map:

φz :
{[a, b, c] : a, b, c are not all zero}

∼ → A2 ∪ P1

[a, b, c] 7→

8<:
“a
c
,
b

c

”
∈ A2 if c 6= 0

[a, b] ∈ P1 if c = 0
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Now we construct the reverse map:

ψz : A2 ∪ P1 → {[a, b, c] : a, b, c are not all zero}
∼

(x, y) ∈ A2 7→ [x, y, 1]

[A,B] ∈ P1 7→ [A,B, 0]

First we will show these maps are well defined. Suppose [a, b.c] ∼ [d, e, f ]. Then [d, e, f ] = [ta, tb, tc]. If

c = 0, then φz([a, b, c]) = (
a

c
,
b

c
), and φz([d, e, f ]) = (

ta

tc
,
tb

tc
) = (

a

b
,
b

c
). If c 6= 0, then φz([a, b, c]) = [A,B]

and φz([d, e, f ]) = [tA, tB] ∼ [A,B]. Also, if [A,B] ∼ [D,E] ∈ P1, then ψz([A,B]) = [A,B, 0] ∼
[D,E, 0] = ψz([D,E]).

We will show these two maps are inverses. If c 6= 0,

[a, b, c] 7→

 
a

c
,
b

c

!
7→

"
a

c
,
b

c
, 1

#
= [a, b, c].

If c = 0,

[a, b, c] 7→ [a, b] 7→ [a, b, 0] = [a, b, c].

Why would we want to work with the projective plane as opposed to the regular affine plane? There
are several useful consequences of working with projective geometry; perhaps the most remarkable of
these is Bezout’s theorem.

Definition 2. A polynomial, F , is homogeneous of degree d, provided it satisfies

F (tX, tY, tZ) = tdF (X,Y, Z).

For example, the curve C : X2Y = ZY 2 + Z3 is homogenous of degree three.

Definition 3. A projective curve C, is the set of solutions to a polynomial equation

C : F (X,Y, Z) = 0,

where F is a non-constant homogeneous polynomial.

To see why this is useful, consider [a, b, c] ∼ [d, e, f ] ∈ P2. Substituting both pairs of coordinates into
our curve, C, we have:

a2b = cb2 + c3

(a2b)t3 = (cb2 + c3)t3

(ta)2(bt) = (ct)(bt)2 + (ct)3

d2e = fe2 + f2.

So coordinates in the same equivalence class yield the same point on the curve.

Definition 4. The degree of a curve is the degree of its defining polynomial.

For example, the degrees of the curves C1 : X2 + Y 2 − Z2 = 0 and C2 : Y 2Z −X3 −XZ2 = 0 are 2
and 3, respectively.

Definition 5. If C is a curve given by the equation f(x, y) = 0, then we can factor C into a product of
irreducible polynomials

f(x, y) = p1(x, y)p2(x, y) · · · pn(x, y).

Since C[x, y] is a unique factorization domain, every polynomial has a unique factorization into a product
of this form. The components of the curve C are the curves pi(x, y). Two curves have no common
components if their irreducible components are distinct.
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For example, the curves f(x) = x and g(x) = x2 + 1 have no common components, but the curves
h(x) = x− 1 and k(x) = x2 − 1 have the common component x− 1 = 0.

Theorem 2 (Bezout). Let C1 and C2 be projective curves with no common components. Then the
number of points in which C1 and C2 intersect is deg(C1) · deg(C2).

Essentially, Bezout’s theorem says that C1 ∩ C2 consists of a finite set of points if the irreducible
polynomials of C1, C2 are distinct. For a proof of Bezout’s theorem, please see the appendix of ? . It
is important to note here that the points might not all be distinct. For example, the curves y = 0 and
y = x2 intersect only at x = 0, but this point is counted twice. The following definition is from (?,
appendix).

Definition 6. To each point, P ∈ P2 we assign a multiplicity, or intersection index I(C1 ∩C2, P ). This
is a non-negative integer reflecting the extent to which C1 and C2 are tangent to one another at P or are
not smooth at P . The intersection index has the following properties;
1) If P 6∈ C1 ∩ C2, then I(C1 ∩ C2, P ) = 0.
2) If P ∈ C1∩C2, if P is a non-singluar point of both C1 and C2, and if C1 and C2 have different tangent
directions at P , then I(C1 ∩ C2, P ) = 1. We say C1 and C2 intersect transversally at P .
3) If P ∈ C1 ∩ C2 and if C1 and C2 do not intersect transversally at P , then I(C1 ∩ C2, P ) ≥ 2.

To motivate the definition of multiplicity, consider two curves y = f(x) and y = g(x). Suppose that
there is some point a, where f(a) = g(a), so that the curves intersect at a. Then f(a) − g(a) = 0, and
(x−a)|[f(x)−g(x)]. We say that the multiplicity of the intersection at a is the highest power, n, such that

(x− a)n|[f(x)− g(x)].

Figure 3 illustrates how a conic and a cubic intersect six times, and a cubic and a quintic intersect
15 times.

Figure 3: Examples of Bezout’s Theorem.

Projective geometry provides us with a useful and necessary context for thinking about elliptic curves.
Given an elliptic curve (y2 = x3 + Ax+ B), we can homogenize it by multiplying every term by appro-
priate powers of z so that each term has degree three. This is our map ψ. We can also dehomogenize
a curve, say with respect to z, by substituting 1 for z, as in our map φ. In this way, we can obtain a
correspondence between projective curves and affine curves missing the points at infinity. We can think
of the projective curve as all the affine parts “glued” together.

To demonstrate this a little better, let’s compute an example. Suppose we want to study the affine
curve

y2 = x3 − x.

We can transfer it to the projective plane by using the map ψz and homogenize the curve by multiplying
every term by the appropriate power of Z. We have:

Y 2Z = X3 −XZ2.

To find the point at infinity, we want to find the extra points we added in when we homogenized the
curve. So, we use the map φz, and look at the second part of the map, when Z = 0. Then we have
X3 = 0, which gives us [0, y, 0] ∼ [0, 1, 0] ∈ P2. So in the projective plane, we have :

Y 2Z = X3 −XZ2 ⊆ P2 ∼= (y2 = x3 − x ⊆ A2) ∪ ([0, 1, 0] ⊆ P1) ⊆ A2 ∪ P1 ∼= P2.
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When we transfered our curve from the affine plane to the projective plane through the process of ho-
mogenization, we added a point at infinity. The maps ψz and φz enabled us to find this point at infinity.
We have now written our curve as a union of two parts corresponding to the first construction of the
projective plane:

C ⊆ P2 ∼= (C ∩ A2) ∪ (C ∩ P1) ⊆ A2 ∪ P1.

Proposition 3. An elliptic curve has only one point at infinity.

Proof. Begin by considering the normalized Weierstrass equation for an elliptic curve.

y2 = x3 +Ax+B ∈ A2.

Homogenize it by multiplying each term by the appropriate power of Z.

Y 2Z = X3 +AXZ2 +BZ3 ∈ P2.

The “points at infinity” will be the points where Z = 0. So, setting Z = 0, we have X3 = 0. This gives
us all triples of points [0, y, 0] ∼= [0, 1, 0] ∈ P2, a single point.

What if we considered points where X = 0? Then we would have the curve Y 2Z = BZ3. If Y = 0,
then Z = 0 and we would have the point [0, 0, 0] 6∈ P2. So Y 6= 0. If Z = 0, then Y is free, and we have
all triples of points [0, y, 0] ∼ [0, 1, 0] ∈ P2, a single point.

Considering Bezout’s theorem with a line and a curve, every line will intersect an elliptic curve in
three points. What if the line is vertical? Then it will intersect the elliptic curve in one or two points
that are visible in the part of the curve lying in the affine plane. The third point of intersection is the
“point at infinity” on the projective line, which lies infinitely far out on all vertical lines.

4 The Group Law on an Elliptic Curve

Perhaps one of the most interesting facts about elliptic curves is that the points on an elliptic curve
form a group. This is not obvious, and requires proof. There are explicit formulas for adding points on
an elliptic curve, that can be shown to satisfy the group axioms. However, we do not give them here;
they can be found in (?, Ch.1) or (?, Ch.2). Instead, we will just present the basic idea.

From Bezout’s theorem, we know that an elliptic curve and a line must intersect in deg(curve) ·
deg(line) = 3 · 1 = 3 points. There is a slight technicality here; if a line is tangent to a curve at a point,
we say that the line intersects the curve twice (or three times) at that point. Figure 4 shows how to add
points on an elliptic curve. To add points:
1. Start with two points on an elliptic curve, P and Q.
2. Draw the line between the points P and Q. It will intersect the curve in one more point, call it P ∗Q.

3. Now take the line through P ∗Q and the identity point on the elliptic curve. This will intersect the
curve in one more point, P +Q.
Since we count points with multiplicity, we may end up with a situation in which P ∗ Q = P . In this
case, proceed as outlined.

What if we want to add P + P? To start take the line tangent to the curve at P . This will intersect
the curve in one more place, call it P ∗P . Take the line through P ∗P and the identity to get P +P . Note
that P + P = −P and P + P + P = O, where O is the identity. If the identity is the point at infinity in
a normalized curve, then the curve is symmetric about the x-axis, and the last step is a reflection across
the x-axis. However, we could choose any point on the curve to be the identity, and it would satisfy the
group law. The “point at infinity” is often chosen to be the identity. Since we are working in a group,
there can only be one identity point.
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Figure 4: The Group Law.

There is another useful theorem due to Mordell:

Theorem 4. Let E be an elliptic curve. The the group of rational points on the curve, E(Q), is a finitely
generated abelian group.

A rational point is a point where both coordinates are rational. An abelian group, G, is called finitely
generated if there are finitely many elements x1, x2, ..., xr ∈ G, such that every element of G can be
written g = n1x1 + n2x2 + · · ·+ nrxr, where ni ∈ Z. In other words, there is some finite list of elements
in G, such that every element in G can be written as an integer linear combination of these elements.
Actually this gives us some important information about the structure of the group. The Fundamental
Theorem of Finitely Generated Abelian Groups as stated in ? is the following:

Theorem 5. Every finitely generated abelian group G is isomorphic to a direct product of cyclic groups
in the form

Z/(p1
k1Z)× Z/(p2

k2Z)× · · · × Z/(pn
knZ)× Z× Z× · · · × Z| {z }

r

where the pi are primes, not necessarily distinct, and the ki are positive integers. The direct product is
unique except for a possible rearrangement of the factors, that is, the number of factors (called the Betti
number of G) of Z is unique and the prime powers pi

ki are unique. The Betti number, or number of
factors, r, is more commonly called the rank of an elliptic curve.

For example, the curve y2 = x3 − x has rank 0. As is shown in ? the group of rational points on this
curve is:

E(Q) = {O, (0, 0), (1, 0), (−1, 0)} ∼= Z/2Z× Z/2Z.

5 An Elliptic Curve is a Torus

The group law on an elliptic curve is the same as the group law on a torus generated by a lattice.
The proof is long and detailed, and can be found in (?, Ch.9). We give the basic details here. A lattice
is an additive subgroup of C of the form L = Zω1 + Zω2 = {n1ω1 + n2ω2 : n1, n2 ∈ Z, and ω1, ω2 ∈ C}.
We are interested in lattices because C/L is a torus. To see this, imagine a lattice on the complex plane,
i.e., (w1, w2 ∈ C). Just looking at one “fundamental parallelogram” gives us a picture of everything in
C/L. Now, since we are looking at C/L, we can imagine gluing the bottom and top of the parallelogram
to form a tube, and then gluing the edges of the tube together to form a torus.
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Figure 5: Constructing a Torus.

To show the correspondence between a lattice and an elliptic curve, we need to introduce a mero-
morphic function, called the Weierstrass ℘-function, ℘(z). A meromorphic function is a function of the

form f(z) =
g(z)

h(z)
, where g, h are entire functions with h(z) 6= 0. An entire function is a function that is

differentiable everywhere in the domain. So a meromorphic function will only have finite-order, isolated
poles and zeros, and no essential singularities in its domain. Here we have the Weierstrass function:

℘(z) = ℘(z;L) =
1

z2
+

X
ω∈L,w 6=0

 
1

(z − ω)2
− 1

ω2

!
.

Since all the terms in the Weierstrass function are squared, ℘(z) = ℘(−z).
Proposition 6. (1) ℘(z) is meromorphic on C, (2) is doubly periodic, (3) and every doubly periodic
function for L is a rational function of ℘ and its derivative, ℘′.

In other words, every doubly periodic function on L, can be written as a ratio of polynomials of ℘
and ℘′.

Proof. To prove (1), note that a limit of analytic functions is analytic, so ℘(z) is analytic for z 6∈ L. If

z ∈ L, then the sum of the terms for ω 6= z is analytic near z, and the term
1

(z − ω)2
causes ℘ to have a

double pole at z.
To prove (2), we want to show that ℘(z + ω) = ℘(z), for all ω ∈ L. Begin by differentiating ℘(z) term
by term to get :

℘′(z) = −2
X
ω∈L

1

(z − ω)3
.

Notice ω = 0 is included in the sum. The sum converges absolutely when z 6∈ L, and changing z to
z + ω shifts the terms in the sum. So, ℘′(z + ω) = ℘′(z). Thus, there is some constant, cω such that
℘(z + ω) − ℘(z) = cω, for all z 6∈ L. Put z = ω

2
, and cω = ℘(−ω/2) − ℘(ω/2) = 0, since ℘(−z) = ℘(z)

for all z ∈ C.

As a result of the function being doubly periodic, it assumes exactly the same values on corresponding
points on the opposite side of the “fundamental parallelogram.” So the Weierstrass ℘ function is still
well defined even when the opposing sides of the parallelogram are identified. However, when we make
this identification, and glue the corresponding edges, we have a torus. So the torus is the natural domain
of the Weierstrass ℘ function, or any doubly periodic complex function, and ℘(Z) is well defined on C/L.
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The proof of (3) can be found in ?.

After proving a few more theorems and lemmas, one can show the following.

Theorem 7. The following map is an isomorphism of groups.

φ : C/L→ E(C)

z 7→ [℘(z), ℘′(z), 1]

0 7→ [0, 1, 0]

where [0,1,0] is the point at infinity on the elliptic curve.

E(C) is the group of complex points of the elliptic curve. Every lattice generates an elliptic curve.

Now we need to work the other way, and show that every elliptic curve generates a lattice. Let
y2 = 4x3 − Ax − B be an elliptic curve over C. We want to use this curve to find generators A,B
corresponding to this curve that generate the lattice L. Define the Eisenstein series for k ≥ 3:

Gk(L) =
X

ω∈L,ω 6=0

ω−k.

This sum can be shown to converge, see (?, p.263). It is also shown in ? that

℘′(z) = 4℘(z)3 − 60G4℘(z)− 140G6.

Setting g2 = 60G4 and g3 = 140G6 gives

℘′(z)2 = 4℘(z)3 − g2℘(z)− g3.

So the points (℘(z), ℘′(z)) lie on the curve

y2 = 4x3 − g2x− g3.

So we have our lattice generators A = g2(L) and B = g3(L).

The last thing left to do is to figure out how to generate a lattice, given an elliptic curve.

Definition 7. To compute the arithmetic-geometric mean, denoted M(a, b), the following algorithm is
used.

a0 = a, b0 = b

an =
1

2
(an−1 + bn−1)

bn =
p
an−1bn−1

It is shown in ? that lim
n→∞

an = lim
n→∞

bn which we call M(a, b).

For a curve with three real roots, e1, e2, e3, we can generate our lattice L = Zω1 + Zω2 by

ω1 =
π

M(
√
e3 − e1,

√
e3 − e2)

and ω2 =
πi

M(
√
e3 − e1,

√
e2 − e1)

.

Using GP PARI, it is easy to compute examples. The curve y2 = x3 − x has three real roots, and has a
lattice generated by ω1 = 2.62205... and ω2 = iω1.

Lattices may be defined similarly for curves with only one real root. Let e′ =
q

3e12 − 1
4
g2. Then:

ω1 =
2π

M(
√

4e′,
√

2e′ + 3e1)
, ω2 =

−ω1

2
+

πi

M(
√

4e′,
√

2e′ − 3e1)
.
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For example, the curve y2 = x3 + 1 has only one real root, and a lattice generated by ω1 = 4.2065... and
ω2 = −2.1032...+ i(1.21432...).

The important point is that if a curve has three real roots, then our parallelogram is a rectangle. If
we have only one real root, we can still normalize one of the lattice generators to be real, but the other
will be complex, giving us a parallelogram.

6 Mapping the Real Part of an Elliptic Curve to a Torus

Our main theorem shows what happens to the real part of the elliptic curve when we perform the
group isomorphism between E(C) and C/L, by mapping the points of the elliptic curve to points on the
torus.

Theorem 8. The real part of an elliptic curve is either a (0,1) or a (0,2) torus link.

First let’s give some background on torus links, which may be found in ?. We’ll start with torus
knots, which are links with a single component or closed curve. A torus knot is a knot that lies on the
surface of a torus. We denote it by (p, q), where p, q are relatively prime. The integer p is the number of
times the thread is looped through the hole of the torus, and q is the number of revolutions the string
makes around the torus before the ends are joined. For example the well known trefoil knot is a (3, 2)
torus knot, because it loops 3 times around the hole of the torus, and travels twice around before the
ends are joined. Note that (p, q) and (q, p) knots are equivalent, since the “hole” of a torus is not well
defined. That is, we have two different ways to glue the “fundamental parallelogram” into a torus when
we start with the planar diagram. In terms of the parallelogram, p and q count the number of crossings
on the two edges. For a torus link, p and q need not be relatively prime. A torus link will have gcd(p, q)
components, or closed curves. When (p, q) = 1, there is a single component and the link is a knot. Our
Theorem says that the real points on an elliptic curve will either be mapped to the unknot, (which is a
loop around the torus once), or to two parallel unknotted loops.

Figure 6: A (3,2) trefoil.

The next step to prove the theorem is to determine how the real points of an elliptic curve are mapped
from our normalized elliptic curve to a lattice. The real points of an elliptic curve are the points that
we see when we look at the graph of an elliptic curve in the plane. We define an elliptic curve over the
complex numbers, but we would need to be able to visualize 4 dimensional space to see how this actually
works. Recall that we can normalize an elliptic curve to the form y2 = x3 +Ax+B. To determine where
the real points get mapped to, we wrote several programs in GP PARI to generate and test random
elliptic curves. The programs are given in the appendix. We found that there are two cases. This
following may be found in (?, Ch.9).

Proposition 9. Let E be an elliptic curve. If E has three real roots (two components), then the real
points of the elliptic curve get mapped to the line y = 0, the bottom of the parallelogram, and also to
a line midway up the parallelogram, parallel to the base, y = (1/2)Im(ω2). This forms a (0,2) torus
link. If the curve has only one component (one real root) the real points get mapped to the bottom of the
parallelogram. This is the (0,1) torus knot.

Here we are using the notation y = Im(ω2) to denote a line midway up the parallelogram and parallel
to the bottom. Recall that when there are three real roots, ω2 is purely imaginary. So we have a
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horizontal line intersecting the y-axis at ω2. Figure 7 illustrates the two possibilities for the fundamental
parallelogram, with the real points drawn in bold.

Figure 7: The two “fundamental parallelograms”.

Proof. First we will do the rectangular case, when E has three real roots. We have L = Zω1 + Zω2, with
ω1 ∈ R and ω2 ∈ iR. Then we have (℘(z), ℘′(z)) ∈ E(R), when z = tω2 with 0 ≤ t < 1, and also when
z = (1/2)ω1+tω2, with 0 ≤ t < 1. Where does this come from? If z is real and the lattice, L, is preserved
under complex conjugation, then conjugating the defining expression for ℘(z) leaves it unchanged, so ℘
maps reals to reals. To see the second part, conjugate z = (1/2)ω1 + tω2 to get z = −(1/2)ω1 + tω2,
which is equivalent to z modulo L. The defining expression for ℘(z) is again unchanged, so ℘ maps reals
to reals. In particular, the real points will be mapped either to a line on the bottom of the parallelogram,
or to a line on the bottom of the parallelogram and another line half way up and parallel to the bottom
of the parallelogram.

To see the torus knots, simply fold the fundamental parallelogram into a torus.

This proof answers our question for a standard choice of our lattice generators ω1, ω2, corresponding
to a normalized curve. Now the question is what would happen if our lattice generators were not nor-
malized? To examine this, we look at an operation called homothety. Two lattices, L,L′ are said to be
homothetic if L = λL′, where λ ∈ C. Points on our lattice get mapped:

λ : z 7→ λz, where (x, y) = x+ iy = z.

Now let’s consider points on a line. If lines cannot be made to wrap more times around the torus under
homothety, then the lattice we start with does not matter, because we’ll get the same curve on the torus.

Lemma 10. The number of times that a line intersects the parallelogram does not change under homo-
thety. In other words, the torus link formed by the real part of the elliptic curve does not change under
homothety.

Proof. Let’s start with some points on the line y = mx+ b, and then apply homothety. Set λ = (s+ it).
Then we have:
λ(x+ i(mx+ b)) = (s+ it)(x+ i(mx+ b)) = (x(s− tm) + b) + i(x(sm+ t) + b) = u+ iv.
We want to write v as v = nu+ c, with n, c ∈ R. Then we will have shown that lines get mapped to lines

under homothety. Take n =
sm+ t

s− tm
, and c = (1− n)b. Then we will have v = nu+ c.

To see that the number of times the line wraps around does not change, consider a line that passes
through the points aω1 + 0ω2 and bω1 + ω2, with a, b ∈ R ∩ [0, 1], where we have picked our points to
be on the bottom and top of the fundamental parallelogram respectively. Then aω1 + 0 represents a
point on the bottom of the parallelogram that is some fraction of the distance between 0 and ω1. Under
homothety, we would map to λ(aω1 +0ω2) = aλω1 +0 and λ(bω1 +ω2) = bλω1 +λω2. So the end points
of our line stay the same proportion of the distance along the top and bottom of the parallelogram,
leaving the number of times our line wraps around the torus unchanged.

Here is an alternate version of the first part of the proof, that lines get mapped to lines. Homothety
can also be thought of as a linear map in R2.

11



Proof. Let λ = s+ it, z = x+ iy. Then λz = sx− ty + i(tx+ sy). So we have the map:»
x
y

–
7→ λ

»
x
y

–
=

»
s −t
t s

– »
x
y

–

Note that we do not even need this much to figure out what happens to our curves under homothety.
The lines that we have are the ones on the bottom of the parallelogram and half way up. It is clear
that homothety maps points on the perimeter of the parallelogram to points on the perimeter of the
parallelogram, so the line on the bottom of the parallelogram will get mapped to a line on the bottom of
the parallelogram. In the case with three real roots, (recall that this condition generates a rectangular
lattice with ω2 purely imaginary), we will also have a line half way up, y = 1

2
Im(ω2). Under homethety

this line gets mapped to y = λω1x + λ 1
2
w2, a line half way up and parallel to the bottom of the

parallelogram.

7 Complex Multiplication

We also studied elliptic curves with complex multiplication. An endomorphism is a homomorphism
of a group, G, to itself. The endomorphisms of a group can be shown to form a ring under composition
of homomorphisms, see ?.

Definition 8. An elliptic curve is said to have complex multiplication if its endomorphism ring is strictly
larger than Z.

On an elliptic curve, we can always construct an endomorphism by “multiplying” the points on the
curve by some n ∈ Z, i.e., adding a point to itself n times. If n < 0, we add the inverse of a point n
times. So, Z ⊆ End(E). If a curve has complex multiplication, then it has other endomorphisms besides
multiplication by the integers. The proof of the next theorem is essentially from (?, Ch.10).

Lemma 11. Let G be a group. If φ : G → G is an isomorphism and ψ : G → G is a homomorphism,
then φ−1 ◦ ψ ◦ φ is a homomorphism.

Proof. We want to show that for a, b ∈ G, (φ−1 ◦ ψ ◦ φ)(a · b) = (φ−1 ◦ ψ ◦ φ)(a) · (φ−1 ◦ ψ ◦ φ)(b). Since
φ is an isomorphism and ψ is a homomorphism:

(φ−1 ◦ ψ ◦ φ)(a · b) = (φ−1(ψ(φ(a · b))))
= (φ−1(ψ(φ(a) · φ(b)))

= (φ−1(ψ(φ(a)) · ψ(φ(b)))

= (φ−1(ψ(φ(a))) · φ−1(ψ(φ(b))).

So φ−1 ◦ ψ ◦ φ is a homomorphism.

Theorem 12. Let E be an elliptic curve over C corresponding to the lattice L. Then:

End(E) ∼= {β ∈ C|βL ⊆ L}.

Proof. Let L = Zω1 + Zω2 be the lattice corresponding to E. Let α be an endomorphism of E. Then α
is a homomorphism from E(C) to E(C), and α is given by rational functions (see ?):

α(x, y) = (R(x), S(y))

for rational functions R,S. Recall the isomorphism φ from our map between an elliptic curve and a
torus. Then the map

α̃(z) = φ−1(α(φ(z)))
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is a homomorphism from C/L to C/L. If we consider only a sufficiently small neighborhood U of z = 0,
we have an analytic map from U to C (since by taking a small enough neighborhood we can avoid any
poles from our homomorphism of rational functions), with

α̃(z1 + z2) ≡ α̃(z1) + α̃(z2) (mod L)

for all z1z2 ∈ U . By subtracting the appropriate element of L, we may assume α̃(0) = 0. Since

α̃(z1 + z2) ≡ α̃(z1) + α̃(z2) (mod L) ⇒ α̃(z1) = α̃(z2)− ω

⇒ ω = α̃(0) ≡ 0 (mod L).

By continuity, α̃(z) is near zero whenever z is near zero. If U is small enough, we can assume that

α̃(z1 + z2) = α̃(z1) + α̃(z2)

for all z1, z2 ∈ U . Both sides are near zero, so they may differ only by 0 ∈ L. So, for z ∈ U , we have

α̃′(z) = lim
h→0

α̃(z + h)− α̃(z)

h

= lim
h→0

α̃(z) + α̃(h)− α̃(z)

h

= lim
h→0

α̃(h)− α̃(0)

h
= α̃′(0).

Let β = α̃′(0). Since α̃′(z) = β for all z ∈ U , we must have that α̃(z) = βz for all z ∈ U . Now take an
arbitrary z ∈ Z. Then there exists some n ∈ Z with z/n ∈ U . Thus,

α̃(z) ≡ nα̃(z/n) = n(βz/n) = βz (mod L),

so our endomorphism α̃ is given by multiplication by β. Since α̃(L) ⊆ L, we have also that βL ⊆ L.

Thus far, we have shown that endomorphisms are given by numbers β. Now we will show that all β’s
give endomorphisms. Take β ∈ C satisfying βL ⊆ L. We have the homomorphism:

β : C/L→ C/L.
We want to show that the corresponding map on E is given by rational functions in x, y. The functions
℘(βz) and ℘′(βz) are doubly periodic with respect to L, since βL ⊆ L. By proposition ??, there are
rational functions, R,S such that

℘(βz) = R(℘(z)) and ℘′(βz) = ℘′(z)S(℘(z)).

So multiplication by β on C/L corresponds to the map

(x, y) 7→ (R(x), yS(x))

on E. This is what it means for β to be an endomorphism on E.

Now let’s compute an example of a curve that does have complex multiplication. That is, we want
to find an endomorphism of the group of points on a curve that is not multiplication by some element
of Z. For example, we can argue that the curve y2 = 4x3 − 4x, has complex multiplication. This curve
is generated by the lattice ω1 = 2.622057... and ω2 = iω1. This is a square lattice, so rotation by π

2

sends L back to itself. In other words, iL = L. By putting this into our expression for the Weierstrass
-℘ function, we have:

℘(iz) =
1

(iz)2
+
X
ω 6=0

 
1

(iz − ω)2
− 1

ω2

!

=
1

(iz)2
+
X
iω 6=0

 
1

(iz − iω)2
− 1

iω2

!
= −℘(z).
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Differentiating, ℘′(iz) = i℘′(z). So we have the endomorphism given by:

i(x, y) = (−x, iy).
To check that this is actually an endomorphism, take a point (x, y) on our curve. Substitute as

prescribed by the homomorphism:

−iy3 = (iy)3 = 4(−x)2 − 4(−x) = 4x2 + 4x = i(4(ix)2 − 4(ix)).

So our map sends points on the curve to points on the curve, since we have mapped to a reflection across
the x-axis. If a curve has complex multiplication, and its endomorphism ring is larger than Z, then what
could the endomorphism ring be?

Definition 9. Let K = Q(
√
−d) = {a+ b

√
−d|a, b ∈ Q}. Then K is an imaginary quadratic field.

The following is shown in (?, Ch.10).

Theorem 13. Let K be an imaginary quadratic field. Let τ ∈ C. Then an elliptic curve C/(Zτ + Z)
has complex multiplication by some subring in K if and only if τ ∈ K.

In other words, the endomorphism ring of an elliptic curve is either Z or a subring in an imaginary
quadratic field. Another question we wanted to answer was whether curves that have complex multi-
plication correspond to (0, 1) or (0, 2) torus links. Earlier in this section, we saw a curve with complex
multiplication that had three real roots, and thus gives a (0, 1) torus link. It turns out that the curve

y2 = x3 + 1 has complex multiplication by (x, y) 7→ (−1+
√
−3

2
x,−y). As we also saw before, this curve

has only one real root, and corresponds to a (0, 2) torus link. So, curves with complex multiplication can
have either type of real link.
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8 Appendix: GP PARI Code

Here is the GP PARI code I wrote to map points on an elliptic curve to points on a torus. The first
program allows the user to choose an elliptic curve to map. It prints the output in the PARI window as
the coordinates of the points on the torus.

{print("please enter the vector of coefficients for an elliptic curve in Weierstrass normal form");

L=input();

print("please input the length of the interval you would like to map");

Int=input();

print("please input the distance between the points you would like to use for mapping");

step=input();

E=ellinit(L);

W=E[15];

if(imag(E[14][3])!=0,

14



forstep(x=E[14][1],Int,step,y=ellordinate(E,x)[1];

w=[x,y]; /*MAP WITH ONE ROOT*/

z=ellpointtoz(E,w);

a=real(z);

if(imag(z)==W,b=0,

if(floor(imag(z)*10^10)/10^10==0,

b=0, b=imag(z))

);

print([a,b])

);

,

first=min(E[14][1],min(E[14][2],E[14][3])); /*ORDERING ROOTS */

third=max(E[14][1],max(E[14][2],E[14][3]));

if((E[14][1]!=first)*(E[14][1]!=third),second=E[14][1],

if((E[14][2]!=first)*(E[14][2]!=third),

second=E[14][2],second=E[14][3]));

forstep(x=first,second,step,y=ellordinate(E,x)[1]; w=[x,y];

z=ellpointtoz(E,w); /*MAPPING FIRST PART*/

a=real(z);

b=imag(z);

print([a,b])

);

forstep(x=third,third+Int,step,y=ellordinate(E,x)[1];

w=[x,y]; /*MAP SECOND COMPONENT*/

z=ellpointtoz(E,w);

a=real(z);

if(imag(z)==W,b=0,

if(floor(imag(z)*10^10)/10^10==0,

b=0, b=imag(z))

);

print([a,b])

);

);

print("w/2 is ", W/2);

}

The second program generates m random elliptic curves, with random coefficients chosen from
[0, n] ∩ Z. It writes the output to two files. The “curvepoints” file gives the point on the torus that
each point on the elliptic curve was mapped to. The “curvesfancy” file gives the equation of the lines on
the torus that the points got mapped to. Both files also offer additional information about each randomly
generated curve.

{

print("please input a bound on the range you would like to choose coefficients from");

n=input();

print("please input the number of curves you would like to create");

m=input();

print("please input the step size you would like to use for mapping");

step=input();

for(i=1,m,

if(Mod(random(n),2)==1,A=1,A=-1); /*GENERATE A RANDOM CURVE*/

a=random(n)*A;

if(Mod(random(n),2)==1,B=1,B=-1);

b=random(n)*B;

if(Mod(random(n),2)==1,C=1,C=-1);

c=random(n)*C;

15



if(Mod(random(n),2)==1,D=1,D=-1);

d=random(n)*D;

if(Mod(random(n),2)==1,F=1,F=-1);

f=random(n)*F;

L=[a,b,c,d,f];

E=ellinit(L);

W=E[16];

write("curvepoints","");

write("curvepoints","");

write("curvepoints","Here is curve number "i" :",L);

write("curvesfancy","");

write("curvesfancy","");

write("curvesfancy","Here is curve number "i" :",L);

write("curvesfancy","The roots are:",E[14]);

write("curvesfancy","The lattice is:",E[15],",",E[16]);

if(real(E[16])==0,write("curvesfancy","W2 is purely imaginary"),

write("curvesfancy","W2 is complex"));

if(imag(E[14][3])!=0,write("curvepoints","This curve has only one real root");

write("curvesfancy","This curve has only one real root");

forstep(x=E[14][1],E[14][1]+10,step,y=ellordinate(E,x)[1];

w=[x,y];

z=ellpointtoz(E,w);

j=real(z); /*MAP ONE ROOT */

if(imag(z)==W,k=0,

if(floor(imag(z)*10^10)/10^10==0, k=0,

k=imag(z)) /*MAP ZERO POINTS TO ZERO */

);

if(k==0,count=count+1);

ints=ints+1;

write("curvepoints",[j,k])

);

if(count==ints, write("curvesfancy", "Second componet, y=",0));

,

write("curvepoints","The roots are:",E[14]);

write("curvepoints","The lattice is:",E[15],",",E[16]);

first=min(E[14][1],min(E[14][2],E[14][3])); /*ORDERING ROOTS */

third=max(E[14][1],max(E[14][2],E[14][3]));

if((E[14][1]!=first)*(E[14][1]!=third),second=E[14][1],

if((E[14][2]!=first)*(E[14][2]!=third),

second=E[14][2],second=E[14][3]));

write("curvepoints","First Componet");

count=0; ints=0;

forstep(x=first,second,step,y=ellordinate(E,x)[1];

w=[x,y];z=ellpointtoz(E,w);

j=real(z); /*MAP FIRST COMPONENT */

k=imag(z);

write("curvepoints",[j,k]);

ints=ints+1;

if(floor(k*10^10)/10^10==floor(imag(W/2)*10^10)/10^10,

count=count+1,);

);

if(count==ints,write("curvesfancy", "First Componet: y=", W/2));

write("curvepoints","Second Componet");

count=0; ints=0;

forstep(x=third,third+10,step,y=ellordinate(E,x)[1];

w=[x,y];
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z=ellpointtoz(E,w);

j=real(z); /*MAP SECOND COMPONENT */

if(imag(z)==W,k=0,

if(floor(imag(z)*10^10)/10^10==0, k=0,

k=imag(z)) /*MAP ZERO POINTS TO ZERO */

);

if(k==0,count=count+1);

ints=ints+1;

write("curvepoints",[j,k])

);

if(count==ints, write("curvesfancy", "Second componet, y=",0));

);

write("curvepoints","w/2 is ", W/2);

write("curvesfancy","w/2 is ", W/2);)

}
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