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1. Introduction

Definition 1. For a directed graph D, Let Lk(D) to be the set of subdigraphs of
D with k vertices that consist of a union of disjoint cycles.

Theorem 1.1. For a graph G, the Ihara Zeta Function’s reciprocal ζG(u)
−1 is a

polynomial with terms cku
k. Those coefficients are:

ck =
∑

L∈Lk(LoG)

(−1)r(L)

Proof. Using the findings of [SS], for a graph G it is known that ζG(u)
−1 = det(I−

uT ), where T is the adjacency matrix of the oriented line graph of G. The paper
then found that in studying the characteristic polymonial of T ,

χT (u) = det(T − uI) = u2m + c1u
2m−1 + ...+ c2m

one finds the following expression of the coefficients of the Ihara Zeta function’s
reciprocal:

ζG(u)
−1 = c2mu2m + c2m−1u

2m−1 + ...+ c1u+ 1.

Next, according to [SS, Lemma 12], the coefficients of this characteristic polynomial

ci are given by (−1)i times the sum of all i×i principal minors of T (labelled det(T̃ )).
Next, [SS, Lemma 13] states that given a digraph D, with linear subgraphs Di for
i = 1, ..., n, with Di having ei even cycles, then

det(A) =

n∑
i=1

(−1)ei

Finally, in the proof of [SS, Theorem 7], they consider ck for 2 ≤ k < 2m. Then the
k × k principal minors of T can be considered as choosing k vertices of LoG and
creating the subdigraph D̃ induced by them. D̃ will be an element of Sk(L

oG).

Next, the prinicpal minors will be the determinants of the adjacency minor T̃ of D̃.
Using a previous statement, for linear subgraphs D̃i for i = 1, ..., j, with D̃i having
e(D̃i) even cycles, we have

det(T̃ ) =
∑

D̃i⊆D̃

(−1)e(D̃i)
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We now diverge from the paper to offer an alternate simplification of the zeta
coefficients, and summing this over all principal minors:

ck =
∑

D̃∈Sk(LoG)

(−1)k
∑

D̃i⊆D̃

(−1)e(D̃i)

=
∑

D̃∈Sk(LoG)

∑
D̃i⊆D̃

(−1)k(−1)e(D̃i)

As each D̃ ∈ Sk(L
oG) will be formed from a unique set of k vertices in LoG, the

set of all D̃i in the above double sum will be exactly Lk(L
oG) defined before, so

we can simplify: [check argument validity]

ck =
∑

L∈Lk(LoG)

(−1)k(−1)e(L)

=
∑

L∈Lk(LoG)

(−1)k·e(L)

Let L ∈ Lk(L
oG) and assume k is odd. Then k is the sum of vertices in all cycles,

so there must be an odd number of odd cycles. If the number of cycles r(L) is even,
then there are an odd number of even cycles, and if it is odd, then there are an even
number of even cycles; the parity of r(L) will be the opposite of e(L). Similarly
for k even, there are an even number of odd cycles, so the parity of the number of
even cycles e(L) will match the parity of r(L). To summarize:

k e(L) r(L) k · e(L)
Even Even Even Even
Even Odd Odd Odd
Odd Even Odd Odd
Odd Odd Even Even

As r(L) and k · e(L) have the same parity in all cases, we arrive at

ck =
∑

L∈Lk(LoG)

(−1)r(L)

□

2. Families of rank 2 graphs

Definition 2. A Gm,n graph, with m,n > 2, given by Gm,n = Cm∪̇Cn, is the
union of two cycles made by identifying one vertex of each. The order and size are
|Gm,n| = m+ n− 1 and ∥Gm,n∥ = m+ n.

Theorem 2.1. For 3 ≤ m ≤ n,

ζGm,n
(u)−1 = −3u2(m+n) + 2um+2n + 2u2m+n + u2n + u2m − 2un − 2um + 1.

Remark 1. When m = n, this factors:

ζGm,m
(u)−1 = −(3um − 1)(u2m − 1)(um − 1).

Following [SS], we first determine the structure of the oriented line graph, LoGm,n.
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Lemma 2.2. The oriented line graph L = LoGm,n consists of a cube with four
‘wings’. Denote the vertices of the cube va,b,c with (a, b, c) ∈ {0, 1}3 so that the
(a, b, c) are the corresponding points on a cube in R3. Orient edges of the cube so
that va,b,c is a source (outdegree 3) if (a, b, c) has an even number of 1’s and a sink
(indegree 3) otherwise. The four wings are oriented cycles each using one of the
vertical edges of the cube. The wings alternate Cm and Cn cycles as we go through
the four vertical edges of the cube.

Figure 1. The oriented line graph LoG3,4

Proof. In Gm,n, let x denote the common vertex of the two cycles and v2, . . . , vm
and w2, . . . , wn the remaining vertices of each cycle, in order as we traverse the
cycles. Then N(x) = {v2, vm, w2, wm} and the vertices of the cube in LoGm,n are
the eight directed edges incident on x in the symmetric digraph D(Gm,n). The four
edges that terminate at x are the four sources in the cube and those that initiate
at x are sinks.

The remaining edges of Cm and Cn generate the wings. Each of the two directed
cycles around Cm in D(Gm,n) generates one wing in L and similarly for Cn. □

Proof. (of Theorem) To prove the theorem we need to study the linear subgraphs
of L = LoGm,n. Since each vertex of the cube is either a source or a sink, in a linear
subgraph each cube vertex has at most one edge from the cube. Then it must have
exactly one edge from the cube and one edge from a wing. It follows that a cycle
in a linear subgraph is either a wing, a Cm+n cycle using top and bottom edges of
a cube face, or else a C2(m+n) cycle that uses all four wings.

As in [SS], we define Sk(L) as the set of order k subgraphs. For D̃ ∈ Sk(L),

Ek(D̃) (respectively, Ok(D̃)) is the count of linear subgraphs with an even (resp.,
odd) number of even cycles.
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Given our listing of the cycles of L above, the subgraphs that admit a linear
subgraph have order k ∈ {2(m+n),m+2n, 2m+n, 2m, 2n,m, n}. For k = 2(m+n),
there are four ways to make a linear subgraph: A single 2(m+ n) cycle, two m+ n
cycles, an m+ n cycle with two wings (one a Cm, the other a Cn), or else by using
all four wings.

Type Count E O
2(m+ n) cycle 2 0 1
Two m+ n cycles 2 1 0
m+ n cycle and 4 0 1
two wings
four wings 1 1 0

Table 1. Linear subgraphs for k = 2(m+ n)

Table 1 list the number of ways each linear subgraph arises and the corresponding
E = E(D̃) and O = O(D̃). Using [SS, Theorem 7],

c2(m+n) =
∑

(−1)2(m+n)(E − O)

= 2(0− 1) + 2(1− 0) + 4(0− 1) + (1− 0) = −3

Type Count E O
m+ n cycle 4 1 0
and n wing
three wings 2 0 1

Table 2. Linear subgraphs for k = m+ 2n, m even

For k = m + 2n, there are two cases depending on the parity of m. Table 2
illustrates the situation when m is even. Then,

cm+2n =
∑

(−1)m+2n(E − O)

= 4(1− 0) + 2(0− 1) = 2

When m is odd, the calculation is similar,

cm+2n = −1
(
4(0− 1) + 2(1− 0)

)
= 2

and determining that cn+2m = 2 is analogous.
A linear subgraph of order 2m necessarily consists of the two Cm wings. There

is only one such linear subgraph and it has E = 1, O = 0, so that c2m = (1−0) = 1.
Similarly c2n = 1.

A linear subgraph of order m is a single wing, but there are two ways to choose
the wing. If m is even, E = 0, O = 1 and cm = 2(0− 1) = −2. When m is odd, we
have instead cm = −1(2(1 − 0)) = −2. Similarly, cn = −2, whatever the parity of
n. Finally, recall that the constant coefficient for ζG(u)

−1 is 1. □

Definition 3. A Gm,n,p graph, with m,n > max{p+ 1, 2} and p ≥ 0, is Gm,n,p =

Cm

p
∪ Cn, the union of two cycles made by identifying p consecutive edges of each (if

p = 0, identify one vertex of each). The order and size are |Gm,n,p| = m+n−p−1
and ∥Gm,n,p∥ = m+ n− p.
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Possible cycles (Figure 2)

• m - m wing (2 kinds)
• n - n wing (2 kinds)
• 2m - two opposite wings (unique)
• 2n - two opposite wings (unique)
• m+ n - two adjacent wings not sharing the pinch point (2 kinds)
• m+ n− 2 - ‘sides’ not passing through pinch points (2 kinds)
• 2m+ n− 2 - one ‘side’ with opposite m wing (2 kinds)
• m+ 2n− 2 - one ‘side’ with opposite n wing (2 kinds)
• 2m+ 2n− 4 - both ‘sides’ (unique)
• 2m+ 2n− 2 - all vertices (2 kinds), one ‘side’ with both opposite wings (2
kinds)

Possible cycles (Figure 3)

• m - m wing (2 kinds)
• n - n wing (2 kinds)
• 2m - two opposite wings (unique)
• 2n - two opposite wings (unique)
• m+ n - two adjacent wings not sharing a p vertical path (2 kinds)
• m+ n− 2p - ‘sides’ not passing through pinch points (2 kinds)
• 2m+ n− 2p - one ‘side’ with opposite m wing (2 kinds)
• m+ 2n− 2p - one ‘side’ with opposite n wing (2 kinds)
• 2m+ 2n− 4p - both ‘sides’ (unique)
• 2m+2n− 2p - all vertices (2 kinds), one ‘side’ with both opposite wings (2
kinds)

ζGm,n,1
(u)−1 =− 4u2m+2n−2 + u2m+2n−4 + 2um+2n−2 + 2u2m+n−2

+ u2n + u2m + 2um+n − 2um+n−2 − 2un − 2um + 1

ζGm,n,p(u)
−1 =− 4u2m+2n−2p + u2m+2n−4p + 2um+2n−2p + 2u2m+n−2p

+ u2n + u2m + 2um+n − 2um+n−2p − 2un − 2um + 1

Remark 2. This reproduces [SS, Corollary 19] when p = 1.

Remark 3. When m = n, u2m+2p − 1 is a factor of ζGm,n,p
(u)−1.

Definition 4. An Hm,n,l handcuff graph, with m,n > 2 and l ≥ 0, is Cm connected
to Cn by a path of l edges (if l = 0, join the two at a vertex). The order and size
are |Hm,n,l| = m+ n+ l − 1 and ∥Hm,n,l∥ = m+ n+ l.

Remark 4. Observe that we could instead have defined negative values of p in
Gm,n,p graphs to represent these graphs (or negative values of l to represent Gm,n,p

graphs), but as the resulting Ihara Zeta Function formulas differ we have chosen
not to.

Possible cycles (Figure 4)

• m - m wing (2 kinds)
• n - n wing (2 kinds)
• 2m - two adjacent wings (unique)
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Figure 2. The oriented line graph LoG4,5,1

Figure 3. The oriented line graph LoG5,6,2

• 2n - two adjacent wings (unique)
• m+ n - two opposite wings (4 kinds)
• 2m+ n - two m wings and one n wing (2 kinds)
• m+ 2n - one m wing and two n wings (2 kinds)
• 2m+ 2n - all four wings (unique)
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• m+ n+ 2l - ‘sides’ navigating around one wing, through the center, to an
opposite wing and back (4 kinds)

• 2m+ n+ 2l - one ‘side’ with opposite m wing (4 kinds)
• m+ 2n+ 2l - one ‘side’ with opposite n wing (4 kinds)
• 2m+ 2n+ 2l - one ‘side’ with both opposite wings (4 kinds)

Formula for Hm,n,l handcuff graph:

ζHm,n,l
(u)−1 =− 4u2m+2n+2l + u2m+2n + 4u2m+n+2l + 4um+2n+2l − 2u2m+n − 2um+2n

− 4um+n+2l + 4um+n + u2n + u2m − 2un − 2um + 1

Figure 4. The oriented line graph LoH4,3,2

Formula for G2,n graph (union of bigon and Cn over a vertex): (Compare with
zeta for Gm,n.)

Theorem 2.3. For 3 ≤ n,

ζG2,n(u)
−1 = −3u2(2+n) + 2u2+2n + 2u4+n + u2n + u4 − 2un − 2u2 + 1.

And for G1,n graph (add a loop at one vertex of a Cn): (Again generalizes
formula for Gm,n)

Theorem 2.4. For 3 ≤ n,

ζG1,n
(u)−1 = −3u2(1+n) + 2u1+2n + 2u2+n + u2n + u2 − 2un − 2u+ 1.

Also, the rank two graphs that have only loops and multiedges agree with the
expected specialization of the formula for Gm,n. Specifically, let B2 denote a bou-
quet of two loops, BL be a bigon with a loop and BB be two bigons joined at a
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single vertex. Then

ζB2
(u)−1 = ζG1,1

(u)−1 = −3u4 + 4u3 + 2u2 − 4u+ 1

ζBL(u)
−1 = ζG1,2

(u)−1 = −3u6 + 2u5 + 3u4 − u2 − 2u+ 1

ζBB(u)
−1 = ζG2,2

(u)−1 = −3u8 + 4u6 + 2u4 − 4u2 + 1

Let G(m, 2, 1) denote a graph that is a Cm with one doubled edge. The zeta
function is a specialization of that for G(m,n, p):

ζGm,2,1
(u)−1 =− 4u2m+2 + 4u2m + 4um+2 + u4 − 4um − 2u2 + 1

In particular, for the theta graph G2,2,1 we have

ζG2,2,1
(u)−1 =− 4u6 + 9u4 − 6u2 + 1

Let H2,n,l denote a Handcuff graph where the cycle Cn is joined to a bigon by
a path of l edges. The polynomial for H2,n,l is a special case of that for Hm,n,l by
substituting m = 2.

ζH2,n,l
(u)−1 =− 4u2(2+n+l) + u2(2+n) + 4u2+2n+2l + 4u4+n+2l − 2u4+n − 2u2+2n

− 4u2+n+2l + u2n + 4u2+n + u4 − 2un − 2u2 + 1

Let H1,n,l denote a Handcuff graph where the cycle Cn is connected to a path
of l edges with a loop at its other end. The polynomial for H1,n,l is a special case
of that for Hm,n,l, by substituting m = 1.

ζH1,n,l
(u)−1 =− 4u2(1+n+l) + u2(1+n) + 4u1+2n+2l + 4u2+n+2l − 2u2+n − 2u1+2n

− 4u1+n+2l + u2n + 4u1+n + u2 − 2un − 2u+ 1

There remain three related types of graph where we have a path of length l with
a loop or a bigon at both ends. Let H2,2,l denote two bigons joined by a path of
length l. Again, the polynomial specializes that for Hm,n,l.

ζH2,2,l
(u)−1 =− 4u2(4+l) + u8 + 8u6+2l − 4u4+2l − 4u6 + 6u4 − 4u2 + 1

If we have a bigon and a loop joined by a path of length l, we’ll write H1,2,l. As
usual, the polynomial specializes Hm,n,l.

ζH1,2,l
(u)−1 =− 4u2(3+l) + u6 + 4u4+2l + 4u5+2l − 2u5 − u4 − 4u3+2l + 4u3 − u2 − 2u+ 1

Finally, ifH1,1,l denotes two loops joined by a path of length l, we again specialize
Hm,n,l.

ζH1,1,l
(u)−1 =− 4u2(2+l) + u4 + 8u3+2l − 4u3 − 4u2+2l + 6u2 − 4u+ 1
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3. Generalized theta graphs

The term generalized theta graph has been used in diverse ways in the literature.
Let G = T (l1, l2, ..., ln) denote a graph consisting of n internally disjoint paths of
l1, l2, ..., ln edges, respectively, between the distinct vertices v0 and v1. We will say
that G is a generalized theta graph. In case n = 3, we refer to G simply as a theta
graph. For example, the Gm,n,p graphs of Definition 3 are T (p,m− p, n− p) theta
graphs.

l1

l1

l2

l2

l3

l3

l4

l4

Figure 5. The oriented line graph LoT (l1, l2, l3, l4)

Assuming li ≥ 1 for i = 1, 2, 3, 4, let’s find ζT (l1,l2,l3,l4)(u)
−1. For a first pass,

assume that at most one li = 1, so that we have no double edges. Figure 5 shows the
oriented line graph. The vertical edges are labelled with li’s which is the number
of vertices on those edges.

4. Spanning Trees

Let κG denote the number of spanning trees of graph G. The following theorem
is given as an exercise in [T].

Theorem 4.1. The Ihara zeta function satisfies

dr

dur
ζG(u)

−1

∣∣∣∣
u=1

= (−1)r−12rr!(r − 1)κG,

where r = |E| − |V |+ 1 is the graph’s rank.

Making use of this formula, we determine κG for the graphs of rank two. If
r = 2, the Theorem states
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κG = −1

8

dr

dur
ζG(u)

−1

∣∣∣∣
u=1

It’s easy to see that the κGm,n
= mn since a spanning tree is formed by removing

one edge of the m-cycle and one edge of the n cycle. This agrees with the result of
Theorem 4.1 using the formula for ζGm,n(u)

−1 given above.
Similarly, κHm,n,l

= mn, which agrees with the result of Theorem 4.1 using the

formula for ζHm,n,l
(u)−1 given above.

The graph Gm,n,p is a theta graph: a union of three internally disjoint paths of
length m− p, n− p, p between the distinct vertices v0 and v1. A spanning tree is
formed by removing one edge from two of the three paths. Thus,

κGm,n,p
= p(m− p) + p(n− p) + (m− p)(n− p)

= mn− p2.

This agrees with the result of applying Theorem 4.1 to the equation for ζGm,n,p
(u)−1

given above.

5. Rank 2 graphs with equal zeta function

In this section we show that if G1 and G2 are rank 2 graphs that share the same
Ihara Zeta function, then G1 and G2 are isomorphic.

For G of rank 2, the leading coefficient of ζG(u)
−1 is c2∥G∥ = −3 or −4. This is

in agreement with the formula of Kotani and Sunada [KS]:

c2|E| = (−1)|E|−|V |
∏
vi∈V

(d(vi)− 1).

In order for two rank 2 graphs to have the same leading term, they would have to
have the same size and either both have a single degree 4 vertex, or both have a
pair of degree 3 vertices. (Degree 2 vertices correspond to multiplying by 1 in the
product.)

Theorem 4.1 implies the two graphs would have the same number of spanning
trees and, as discussed in [SS], if both are simple, they must also have the same
girth. We generalize the definition of girth to multigraphs by saying that a graph
with a loop has girth one. If a multigraph has no loops, but does have bigons, we’ll
say the girth is two. Corollary 14 of [SS] shows that two multigraphs with the same
Ihara zeta function must have the same girth. This implies that a simple graph
cannot share its Ihara zeta function with a graph that has loops or bigons.

Suppose two graphs G1 and G2 of rank 2 share the same Ihara zeta function,
both having leading coefficient −3 for ζG(u)

−1. If both are simple, then they are
both Gm,n graphs. As G1 and G2 have the same order and girth, they must be
isomorphic.

The non-simple rank 2 graphs with leading coefficient −3 are graphs of the form
G2,n or G1,n. Suppose G1 is not simple and has an Ihara zeta function so that
ζG1

(u)−1 has leading coefficient −3. If G2 has the same Ihara zeta function, then,
since they must have the same girth, G2 is also not simple.

If G1 has girth one, it has a loop and G2 must have a loop too. Since they
have the same size, G1 and G2 are isomorphic. Similarly, if G1 has a bigon and no
loop, then G2 must also have a bigon and no loop. Having the same size, G1 and
G2 are again isomorphic in this case. In summary, if G1 and G2 both of rank 2
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have the same Ihara zeta function with leading coefficient −3, then G1 and G2 are
isomorphic.

Next suppose G1 is a simple graph of rank 2 so that ζG1(u)
−1 begins with

−4u2∥G1∥. Then G is a Gm,n,p (with p > 0) or a Hm,n,l (with l > 0). Suppose G1

is a Gm,n,p. Further, we may assume 0 < 2p ≤ m ≤ n so that G1 has girth m.
If G2 = Hm′,n′,l with m′ ≤ n′ and l > 0 has the same Ihara zeta function as

G1, then G2 has girth m′, so m′ = m. Since they have the same size, we conclude
n′ + l = n− p or n = n′ + l+ p. Counting spanning trees, we have mn′ = mn− p2,
whence p2 = m(l + p). Since l > 0 and m ≥ 2p this is a contradiction.

Suppose that G2 = Gm′,n′,p′ with 0 ≤ 2p′ ≤ m′ ≤ n′ has the same Ihara zeta
function as G1. Since G1 and G2 have the same girth, m′ = m. They must also
have the same number of edges, so m+ n− p = m′ + n′ − p′, and n− p = n′ − p′.
This means that for such G2, there is a constant s = n−p for which n′−p′ = s. So
if we vary p′, then n′ varies equally. If m = n, then p = p′ and the graphs are the
same. Otherwise if m ̸= n, we can see if the term −2un will always be present in
the Ihara Zeta Function Inverse by checking if n is strictly less than the powers of
the other terms, and strictly greater than m and 0 which is true by m ̸= n. Since
n > m > 0, n > 1 so 2n > n. Since n > m ≥ 2p, we have m + n − 2p > n. Since
m > 0, m+n > n. As m,n > 0 and m+n−2p > n, we have that 2m+2n−2p > n,
m + 2n − 2p > n, 2m + n − 2p > n. We also have 2m + 2n − 4p > 2n, and since
2n > n we know 2m + 2n − 4p > n. This leaves 2m as the only term that could
collide with the n term. First assume n = 2m. Then the zeta function for Gm,n,p

is:

ζGm,n,p
(u)−1 =− 4u6m−2p + u6m−4p + 2u5m−2p + 2u4m−2p

+ u4m + 2u3m − 2u3m−2p − u2m − 2um + 1

We must determine whether the 2m term collides with any other terms. We know
3m−2p = m+n−2p > n = 2m from earlier, so m−2p > 0. Since m > 1, 6m−2p >
5m − 2p > 4m − 2p > 3m − 2p > 2m and likewise 6m > 5m > 4m > 3m > 2m.
Then we also have 2m − 4p > 0, so 6m − 4p > 4m − 4p > 2m. This means all
exponents will be different than 2m, so the zeta function will have −u2m = −un.
Because we showed earlier that for n ̸= 2m that the zeta function must have term
−2un, this means a graph G2 has the same zeta function as G1 only if n = n′, and
since n − p = n′ − p′ we know p = p′ and G2 = G1. Second, let n ̸= 2m. By the
previous argument, if n′ = 2m, then G2 will have a different zeta function. Then,
from our arguments we know the zeta function inverse for G1 must have term −2un,
and that the zeta function for G2 must have term −2un′

. Therefore it must be the
case that n = n′, p = p′, and G1 = G2.

There are multigraphs of rank 2 that admit to a similar treatment. We need to
lessen the constraints on the definition of a Gm,n,p graph to instead have m,n > p
(but still p ≥ 0). The removal of m,n > 2 means that when m or n equal one,
it will be a loop, and when they equal two a digon. The remaining part of the
condition m,n > p ensures that at least one edge will not be combined between the
two cycles as opposed to at least two edges.
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