IHARA ZETA FUNCTIONS FOR GRAPHS OF RANK TWO.

ALEX RICHARDS

1. Introduction

Definition 1. For a directed graph D, Let $\mathscr{L}_{k}(D)$ to be the set of subdigraphs of D with k vertices that consist of a union of disjoint cycles.

Theorem 1.1. For a graph G, the Ihara Zeta Function's reciprocal $\zeta_{G}(u)^{-1}$ is a polynomial with terms $c_{k} u^{k}$. Those coefficients are:

$$
c_{k}=\sum_{L \in \mathscr{L}_{k}\left(L^{o} G\right)}(-1)^{r(L)}
$$

Proof. Using the findings of [SS], for a graph G it is known that $\zeta_{G}(u)^{-1}=\operatorname{det}(I-$ $u T$), where T is the adjacency matrix of the oriented line graph of G. The paper then found that in studying the characteristic polymonial of T,

$$
\chi_{T}(u)=\operatorname{det}(T-u I)=u^{2 m}+c_{1} u^{2 m-1}+\ldots+c_{2 m}
$$

one finds the following expression of the coefficients of the Ihara Zeta function's reciprocal:

$$
\zeta_{G}(u)^{-1}=c_{2 m} u^{2 m}+c_{2 m-1} u^{2 m-1}+\ldots+c_{1} u+1 .
$$

Next, according to [SS, Lemma 12], the coefficients of this characteristic polynomial c_{i} are given by $(-1)^{i}$ times the sum of all $i \times i$ principal minors of T (labelled $\operatorname{det}(\tilde{T})$). Next, [SS, Lemma 13] states that given a digraph D, with linear subgraphs D_{i} for $i=1, \ldots, n$, with D_{i} having e_{i} even cycles, then

$$
\operatorname{det}(A)=\sum_{i=1}^{n}(-1)^{e_{i}}
$$

Finally, in the proof of [SS, Theorem 7], they consider c_{k} for $2 \leq k<2 m$. Then the $k \times k$ principal minors of T can be considered as choosing k vertices of $L^{o} G$ and creating the subdigraph \tilde{D} induced by them. \tilde{D} will be an element of $\mathscr{S}_{k}\left(L^{o} G\right)$. Next, the prinicpal minors will be the determinants of the adjacency minor \tilde{T} of \tilde{D}. Using a previous statement, for linear subgraphs \tilde{D}_{i} for $i=1, \ldots, j$, with \tilde{D}_{i} having $e\left(\tilde{D}_{i}\right)$ even cycles, we have

$$
\operatorname{det}(\tilde{T})=\sum_{\tilde{D}_{i} \subseteq \tilde{D}}(-1)^{e\left(\tilde{D}_{i}\right)}
$$

[^0]We now diverge from the paper to offer an alternate simplification of the zeta coefficients, and summing this over all principal minors:

$$
\begin{aligned}
c_{k} & =\sum_{\tilde{D} \in \mathscr{S}_{k}\left(L^{\circ} G\right)}(-1)^{k} \sum_{\tilde{D}_{i} \subseteq \tilde{D}}(-1)^{e\left(\tilde{D}_{i}\right)} \\
& =\sum_{\tilde{D} \in \mathscr{S}_{k}\left(L^{o} G\right)} \sum_{\tilde{D}_{i} \subseteq \tilde{D}}(-1)^{k}(-1)^{e\left(\tilde{D}_{i}\right)}
\end{aligned}
$$

As each $\tilde{D} \in \mathscr{S}_{k}\left(L^{o} G\right)$ will be formed from a unique set of k vertices in $L^{o} G$, the set of all \tilde{D}_{i} in the above double sum will be exactly $\mathscr{L}_{k}\left(L^{o} G\right)$ defined before, so we can simplify: [check argument validity]

$$
\begin{aligned}
c_{k} & =\sum_{L \in \mathscr{L}_{k}\left(L^{\circ} G\right)}(-1)^{k}(-1)^{e(L)} \\
& =\sum_{L \in \mathscr{L}_{k}\left(L^{\circ} G\right)}(-1)^{k \cdot e(L)}
\end{aligned}
$$

Let $L \in \mathscr{L}_{k}\left(L^{o} G\right)$ and assume k is odd. Then k is the sum of vertices in all cycles, so there must be an odd number of odd cycles. If the number of cycles $r(L)$ is even, then there are an odd number of even cycles, and if it is odd, then there are an even number of even cycles; the parity of $r(L)$ will be the opposite of $e(L)$. Similarly for k even, there are an even number of odd cycles, so the parity of the number of even cycles $e(L)$ will match the parity of $r(L)$. To summarize:

k	$e(L)$	$r(L)$	$k \cdot e(L)$
Even	Even	Even	Even
Even	Odd	Odd	Odd
Odd	Even	Odd	Odd
Odd	Odd	Even	Even

As $r(L)$ and $k \cdot e(L)$ have the same parity in all cases, we arrive at

$$
c_{k}=\sum_{L \in \mathscr{L}_{k}\left(L^{o} G\right)}(-1)^{r(L)}
$$

2. FAMILIES OF RANK 2 GRAPHS

Definition 2. $A G_{m, n}$ graph, with $m, n>2$, given by $G_{m, n}=C_{m} \dot{\cup} C_{n}$, is the union of two cycles made by identifying one vertex of each. The order and size are $\left|G_{m, n}\right|=m+n-1$ and $\left\|G_{m, n}\right\|=m+n$.

Theorem 2.1. For $3 \leq m \leq n$,

$$
\zeta_{G_{m, n}}(u)^{-1}=-3 u^{2(m+n)}+2 u^{m+2 n}+2 u^{2 m+n}+u^{2 n}+u^{2 m}-2 u^{n}-2 u^{m}+1
$$

Remark 1. When $m=n$, this factors:

$$
\zeta_{G_{m, m}}(u)^{-1}=-\left(3 u^{m}-1\right)\left(u^{2 m}-1\right)\left(u^{m}-1\right)
$$

Following [SS], we first determine the structure of the oriented line graph, $L^{o} G_{m, n}$.

Lemma 2.2. The oriented line graph $L=L^{o} G_{m, n}$ consists of a cube with four 'wings'. Denote the vertices of the cube $v_{a, b, c}$ with $(a, b, c) \in\{0,1\}^{3}$ so that the (a, b, c) are the corresponding points on a cube in \mathbb{R}^{3}. Orient edges of the cube so that $v_{a, b, c}$ is a source (outdegree 3) if (a, b, c) has an even number of 1's and a sink (indegree 3) otherwise. The four wings are oriented cycles each using one of the vertical edges of the cube. The wings alternate C_{m} and C_{n} cycles as we go through the four vertical edges of the cube.

Figure 1. The oriented line graph $L^{o} G_{3,4}$

Proof. In $G_{m, n}$, let x denote the common vertex of the two cycles and v_{2}, \ldots, v_{m} and w_{2}, \ldots, w_{n} the remaining vertices of each cycle, in order as we traverse the cycles. Then $N(x)=\left\{v_{2}, v_{m}, w_{2}, w_{m}\right\}$ and the vertices of the cube in $L^{o} G_{m, n}$ are the eight directed edges incident on x in the symmetric digraph $D\left(G_{m, n}\right)$. The four edges that terminate at x are the four sources in the cube and those that initiate at x are sinks.

The remaining edges of C_{m} and C_{n} generate the wings. Each of the two directed cycles around C_{m} in $D\left(G_{m, n}\right)$ generates one wing in L and similarly for C_{n}.

Proof. (of Theorem) To prove the theorem we need to study the linear subgraphs of $L=L^{o} G_{m, n}$. Since each vertex of the cube is either a source or a sink, in a linear subgraph each cube vertex has at most one edge from the cube. Then it must have exactly one edge from the cube and one edge from a wing. It follows that a cycle in a linear subgraph is either a wing, a C_{m+n} cycle using top and bottom edges of a cube face, or else a $C_{2(m+n)}$ cycle that uses all four wings.

As in [SS], we define $\mathcal{S}_{k}(L)$ as the set of order k subgraphs. For $\tilde{D} \in \mathcal{S}_{k}(L)$, $\mathcal{E}_{k}(\tilde{D})$ (respectively, $\mathcal{O}_{k}(\tilde{D})$) is the count of linear subgraphs with an even (resp., odd) number of even cycles.

Given our listing of the cycles of L above, the subgraphs that admit a linear subgraph have order $k \in\{2(m+n), m+2 n, 2 m+n, 2 m, 2 n, m, n\}$. For $k=2(m+n)$, there are four ways to make a linear subgraph: A single $2(m+n)$ cycle, two $m+n$ cycles, an $m+n$ cycle with two wings (one a C_{m}, the other a C_{n}), or else by using all four wings.

Type	Count	\mathcal{E}	\mathcal{O}
$2(m+n)$ cycle	2	0	1
Two $m+n$ cycles	2	1	0
$m+n$ cycle and two wings	4	0	1
four wings	1	1	0

TABLE 1. Linear subgraphs for $k=2(m+n)$

Table 1 list the number of ways each linear subgraph arises and the corresponding $\mathcal{E}=\mathcal{E}(\tilde{D})$ and $\mathcal{O}=\mathcal{O}(\tilde{D})$. Using [SS, Theorem 7],

$$
\begin{aligned}
c_{2(m+n)} & =\sum(-1)^{2(m+n)}(\mathcal{E}-\mathcal{O}) \\
& =2(0-1)+2(1-0)+4(0-1)+(1-0)=-3
\end{aligned}
$$

Type	Count	\mathcal{E}	\mathcal{O}
$m+n$ cycle and n wing	4	1	0
three wings	2	0	1

TABLE 2. Linear subgraphs for $k=m+2 n, m$ even

For $k=m+2 n$, there are two cases depending on the parity of m. Table 2 illustrates the situation when m is even. Then,

$$
\begin{aligned}
c_{m+2 n} & =\sum(-1)^{m+2 n}(\mathcal{E}-\mathcal{O}) \\
& =4(1-0)+2(0-1)=2
\end{aligned}
$$

When m is odd, the calculation is similar,

$$
c_{m+2 n}=-1(4(0-1)+2(1-0))=2
$$

and determining that $c_{n+2 m}=2$ is analogous.
A linear subgraph of order $2 m$ necessarily consists of the two C_{m} wings. There is only one such linear subgraph and it has $\mathcal{E}=1, \mathcal{O}=0$, so that $c_{2 m}=(1-0)=1$. Similarly $c_{2 n}=1$.

A linear subgraph of order m is a single wing, but there are two ways to choose the wing. If m is even, $\mathcal{E}=0, \mathcal{O}=1$ and $c_{m}=2(0-1)=-2$. When m is odd, we have instead $c_{m}=-1(2(1-0))=-2$. Similarly, $c_{n}=-2$, whatever the parity of n. Finally, recall that the constant coefficient for $\zeta_{G}(u)^{-1}$ is 1 .

Definition 3. $A G_{m, n, p}$ graph, with $m, n>\max \{p+1,2\}$ and $p \geq 0$, is $G_{m, n, p}=$ $C_{m} \stackrel{p}{\cup} C_{n}$, the union of two cycles made by identifying p consecutive edges of each (if $p=0$, identify one vertex of each). The order and size are $\left|G_{m, n, p}\right|=m+n-p-1$ and $\left\|G_{m, n, p}\right\|=m+n-p$.

Possible cycles (Figure 2)

- $m-m$ wing (2 kinds)
- $n-n$ wing (2 kinds)
- $2 m$ - two opposite wings (unique)
- $2 n$ - two opposite wings (unique)
- $m+n$ - two adjacent wings not sharing the pinch point (2 kinds)
- $m+n-2$ - 'sides' not passing through pinch points (2 kinds)
- $2 m+n-2$ - one 'side' with opposite m wing (2 kinds)
- $m+2 n-2$ - one 'side' with opposite n wing (2 kinds)
- $2 m+2 n-4$ - both 'sides' (unique)
- $2 m+2 n-2$ - all vertices (2 kinds), one 'side' with both opposite wings (2 kinds)
Possible cycles (Figure 3)
- $m-m$ wing (2 kinds)
- $n-n$ wing (2 kinds)
- $2 m$ - two opposite wings (unique)
- $2 n$ - two opposite wings (unique)
- $m+n$ - two adjacent wings not sharing a p vertical path (2 kinds)
- $m+n-2 p$ - 'sides' not passing through pinch points (2 kinds)
- $2 m+n-2 p$ - one 'side' with opposite m wing (2 kinds)
- $m+2 n-2 p$ - one 'side' with opposite n wing (2 kinds)
- $2 m+2 n-4 p$ - both 'sides' (unique)
- $2 m+2 n-2 p$ - all vertices (2 kinds), one 'side' with both opposite wings (2 kinds)

$$
\begin{aligned}
\zeta_{G_{m, n, 1}}(u)^{-1}= & -4 u^{2 m+2 n-2}+u^{2 m+2 n-4}+2 u^{m+2 n-2}+2 u^{2 m+n-2} \\
& +u^{2 n}+u^{2 m}+2 u^{m+n}-2 u^{m+n-2}-2 u^{n}-2 u^{m}+1 \\
\zeta_{G_{m, n, p}}(u)^{-1}=- & 4 u^{2 m+2 n-2 p}+u^{2 m+2 n-4 p}+2 u^{m+2 n-2 p}+2 u^{2 m+n-2 p} \\
& +u^{2 n}+u^{2 m}+2 u^{m+n}-2 u^{m+n-2 p}-2 u^{n}-2 u^{m}+1
\end{aligned}
$$

Remark 2. This reproduces [SS, Corollary 19] when $p=1$.
Remark 3. When $m=n, u^{2 m+2 p}-1$ is a factor of $\zeta_{G_{m, n, p}}(u)^{-1}$.
Definition 4. An $H_{m, n, l}$ handcuff graph, with $m, n>2$ and $l \geq 0$, is C_{m} connected to C_{n} by a path of l edges (if $l=0$, join the two at a vertex). The order and size are $\left|H_{m, n, l}\right|=m+n+l-1$ and $\left\|H_{m, n, l}\right\|=m+n+l$.

Remark 4. Observe that we could instead have defined negative values of p in $G_{m, n, p}$ graphs to represent these graphs (or negative values of l to represent $G_{m, n, p}$ graphs), but as the resulting Ihara Zeta Function formulas differ we have chosen not to.

Possible cycles (Figure 4)

- $m-m$ wing (2 kinds)
- $n-n$ wing (2 kinds)
- $2 m$ - two adjacent wings (unique)

Figure 2. The oriented line graph $L^{o} G_{4,5,1}$

Figure 3. The oriented line graph $L^{o} G_{5,6,2}$

- $2 n$ - two adjacent wings (unique)
- $m+n$ - two opposite wings (4 kinds)
- $2 m+n$ - two m wings and one n wing (2 kinds)
- $m+2 n$ - one m wing and two n wings (2 kinds)
- $2 m+2 n$ - all four wings (unique)
- $m+n+2 l$ - 'sides' navigating around one wing, through the center, to an opposite wing and back (4 kinds)
- $2 m+n+2 l$ - one 'side' with opposite m wing (4 kinds)
- $m+2 n+2 l$ - one 'side' with opposite n wing (4 kinds)
- $2 m+2 n+2 l$ - one 'side' with both opposite wings (4 kinds)

Formula for $H_{m, n, l}$ handcuff graph:

$$
\begin{gathered}
\zeta_{H_{m, n, l}}(u)^{-1}=-4 u^{2 m+2 n+2 l}+u^{2 m+2 n}+4 u^{2 m+n+2 l}+4 u^{m+2 n+2 l}-2 u^{2 m+n}-2 u^{m+2 n} \\
-4 u^{m+n+2 l}+4 u^{m+n}+u^{2 n}+u^{2 m}-2 u^{n}-2 u^{m}+1
\end{gathered}
$$

Figure 4. The oriented line graph $L^{o} H_{4,3,2}$
Formula for $G_{2, n}$ graph (union of bison and C_{n} over a vertex): (Compare with zeta for $G_{m, n}$.)

Theorem 2.3. For $3 \leq n$,

$$
\zeta_{G_{2, n}}(u)^{-1}=-3 u^{2(2+n)}+2 u^{2+2 n}+2 u^{4+n}+u^{2 n}+u^{4}-2 u^{n}-2 u^{2}+1 .
$$

And for $G_{1, n}$ graph (add a loop at one vertex of a C_{n}): (Again generalizes formula for $G_{m, n}$)

Theorem 2.4. For $3 \leq n$,

$$
\zeta_{G_{1, n}}(u)^{-1}=-3 u^{2(1+n)}+2 u^{1+2 n}+2 u^{2+n}+u^{2 n}+u^{2}-2 u^{n}-2 u+1
$$

Also, the rank two graphs that have only loops and multiedges agree with the expected specialization of the formula for $G_{m, n}$. Specifically, let B_{2} denote a bourquet of two loops, $B L$ be a tigon with a loop and $B B$ be two tigons joined at a
single vertex. Then

$$
\begin{aligned}
& \zeta_{B_{2}}(u)^{-1}=\zeta_{G_{1,1}}(u)^{-1}=-3 u^{4}+4 u^{3}+2 u^{2}-4 u+1 \\
& \zeta_{B L}(u)^{-1}=\zeta_{G_{1,2}}(u)^{-1}=-3 u^{6}+2 u^{5}+3 u^{4}-u^{2}-2 u+1 \\
& \zeta_{B B}(u)^{-1}=\zeta_{G_{2,2}}(u)^{-1}=-3 u^{8}+4 u^{6}+2 u^{4}-4 u^{2}+1
\end{aligned}
$$

Let $G(m, 2,1)$ denote a graph that is a C_{m} with one doubled edge. The zeta function is a specialization of that for $G(m, n, p)$:

$$
\zeta_{G_{m, 2,1}}(u)^{-1}=-4 u^{2 m+2}+4 u^{2 m}+4 u^{m+2}+u^{4}-4 u^{m}-2 u^{2}+1
$$

In particular, for the theta graph $G_{2,2,1}$ we have

$$
\zeta_{G_{2,2,1}}(u)^{-1}=-4 u^{6}+9 u^{4}-6 u^{2}+1
$$

Let $H_{2, n, l}$ denote a Handcuff graph where the cycle C_{n} is joined to a bigon by a path of l edges. The polynomial for $H_{2, n, l}$ is a special case of that for $H_{m, n, l}$ by substituting $m=2$.

$$
\begin{gathered}
\zeta_{H_{2, n}, l}(u)^{-1}=-4 u^{2(2+n+l)}+u^{2(2+n)}+4 u^{2+2 n+2 l}+4 u^{4+n+2 l}-2 u^{4+n}-2 u^{2+2 n} \\
-4 u^{2+n+2 l}+u^{2 n}+4 u^{2+n}+u^{4}-2 u^{n}-2 u^{2}+1
\end{gathered}
$$

Let $H_{1, n, l}$ denote a Handcuff graph where the cycle C_{n} is connected to a path of l edges with a loop at its other end. The polynomial for $H_{1, n, l}$ is a special case of that for $H_{m, n, l}$, by substituting $m=1$.

$$
\begin{gathered}
\zeta_{H_{1, n}, l}(u)^{-1}=-4 u^{2(1+n+l)}+u^{2(1+n)}+4 u^{1+2 n+2 l}+4 u^{2+n+2 l}-2 u^{2+n}-2 u^{1+2 n} \\
-4 u^{1+n+2 l}+u^{2 n}+4 u^{1+n}+u^{2}-2 u^{n}-2 u+1
\end{gathered}
$$

There remain three related types of graph where we have a path of length l with a loop or a bigon at both ends. Let $H_{2,2, l}$ denote two bigons joined by a path of length l. Again, the polynomial specializes that for $H_{m, n, l}$.

$$
\zeta_{H_{2,2, l}}(u)^{-1}=-4 u^{2(4+l)}+u^{8}+8 u^{6+2 l}-4 u^{4+2 l}-4 u^{6}+6 u^{4}-4 u^{2}+1
$$

If we have a bigon and a loop joined by a path of length l, we'll write $H_{1,2, l}$. As usual, the polynomial specializes $H_{m, n, l}$.
$\zeta_{H_{1,2, l}}(u)^{-1}=-4 u^{2(3+l)}+u^{6}+4 u^{4+2 l}+4 u^{5+2 l}-2 u^{5}-u^{4}-4 u^{3+2 l}+4 u^{3}-u^{2}-2 u+1$
Finally, if $H_{1,1, l}$ denotes two loops joined by a path of length l, we again specialize $H_{m, n, l}$.

$$
\zeta_{H_{1,1, l}}(u)^{-1}=-4 u^{2(2+l)}+u^{4}+8 u^{3+2 l}-4 u^{3}-4 u^{2+2 l}+6 u^{2}-4 u+1
$$

3. Generalized theta graphs

The term generalized theta graph has been used in diverse ways in the literature. Let $G=T\left(l_{1}, l_{2}, \ldots, l_{n}\right)$ denote a graph consisting of n internally disjoint paths of $l_{1}, l_{2}, \ldots, l_{n}$ edges, respectively, between the distinct vertices v_{0} and v_{1}. We will say that G is a generalized theta graph. In case $n=3$, we refer to G simply as a theta graph. For example, the $G_{m, n, p}$ graphs of Definition 3 are $T(p, m-p, n-p)$ theta graphs.

Figure 5. The oriented line graph $L^{o} T\left(l_{1}, l_{2}, l_{3}, l_{4}\right)$

Assuming $l_{i} \geq 1$ for $i=1,2,3,4$, let's find $\zeta_{T\left(l_{1}, l_{2}, l_{3}, l_{4}\right)}(u)^{-1}$. For a first pass, assume that at most one $l_{i}=1$, so that we have no double edges. Figure 5 shows the oriented line graph. The vertical edges are labelled with l_{i} 's which is the number of vertices on those edges.

4. Spanning Trees

Let κ_{G} denote the number of spanning trees of graph G. The following theorem is given as an exercise in $[\mathrm{T}]$.

Theorem 4.1. The Ihara zeta function satisfies

$$
\left.\frac{d^{r}}{d u^{r}} \zeta_{G}(u)^{-1}\right|_{u=1}=(-1)^{r-1} 2^{r} r!(r-1) \kappa_{G}
$$

where $r=|E|-|V|+1$ is the graph's rank.
Making use of this formula, we determine κ_{G} for the graphs of rank two. If $r=2$, the Theorem states

$$
\kappa_{G}=-\left.\frac{1}{8} \frac{d^{r}}{d u^{r}} \zeta_{G}(u)^{-1}\right|_{u=1}
$$

It's easy to see that the $\kappa_{G_{m, n}}=m n$ since a spanning tree is formed by removing one edge of the m-cycle and one edge of the n cycle. This agrees with the result of Theorem 4.1 using the formula for $\zeta_{G_{m, n}}(u)^{-1}$ given above.

Similarly, $\kappa_{H_{m, n, l}}=m n$, which agrees with the result of Theorem 4.1 using the formula for $\zeta_{H_{m, n, l}}(u)^{-1}$ given above.

The graph $G_{m, n, p}$ is a theta graph: a union of three internally disjoint paths of length $m-p, n-p, p$ between the distinct vertices v_{0} and v_{1}. A spanning tree is formed by removing one edge from two of the three paths. Thus,

$$
\begin{aligned}
\kappa_{G_{m, n, p}} & =p(m-p)+p(n-p)+(m-p)(n-p) \\
& =m n-p^{2}
\end{aligned}
$$

This agrees with the result of applying Theorem 4.1 to the equation for $\zeta_{G_{m, n, p}}(u)^{-1}$ given above.

5. Rank 2 graphs with equal zeta function

In this section we show that if G_{1} and G_{2} are rank 2 graphs that share the same Ihara Zeta function, then G_{1} and G_{2} are isomorphic.

For G of rank 2 , the leading coefficient of $\zeta_{G}(u)^{-1}$ is $c_{2\|G\|}=-3$ or -4 . This is in agreement with the formula of Kotani and Sunada [KS]:

$$
c_{2|E|}=(-1)^{|E|-|V|} \prod_{v_{i} \in V}\left(d\left(v_{i}\right)-1\right)
$$

In order for two rank 2 graphs to have the same leading term, they would have to have the same size and either both have a single degree 4 vertex, or both have a pair of degree 3 vertices. (Degree 2 vertices correspond to multiplying by 1 in the product.)

Theorem 4.1 implies the two graphs would have the same number of spanning trees and, as discussed in [SS], if both are simple, they must also have the same girth. We generalize the definition of girth to multigraphs by saying that a graph with a loop has girth one. If a multigraph has no loops, but does have bigons, we'll say the girth is two. Corollary 14 of [SS] shows that two multigraphs with the same Ihara zeta function must have the same girth. This implies that a simple graph cannot share its Ihara zeta function with a graph that has loops or bigons.

Suppose two graphs G_{1} and G_{2} of rank 2 share the same Ihara zeta function, both having leading coefficient -3 for $\zeta_{G}(u)^{-1}$. If both are simple, then they are both $G_{m, n}$ graphs. As G_{1} and G_{2} have the same order and girth, they must be isomorphic.

The non-simple rank 2 graphs with leading coefficient -3 are graphs of the form $G_{2, n}$ or $G_{1, n}$. Suppose G_{1} is not simple and has an Ihara zeta function so that $\zeta_{G_{1}}(u)^{-1}$ has leading coefficient -3 . If G_{2} has the same Ihara zeta function, then, since they must have the same girth, G_{2} is also not simple.

If G_{1} has girth one, it has a loop and G_{2} must have a loop too. Since they have the same size, G_{1} and G_{2} are isomorphic. Similarly, if G_{1} has a bigon and no loop, then G_{2} must also have a bigon and no loop. Having the same size, G_{1} and G_{2} are again isomorphic in this case. In summary, if G_{1} and G_{2} both of rank 2
have the same Ihara zeta function with leading coefficient -3 , then G_{1} and G_{2} are isomorphic.

Next suppose G_{1} is a simple graph of rank 2 so that $\zeta_{G_{1}}(u)^{-1}$ begins with $-4 u^{2\left\|G_{1}\right\|}$. Then G is a $G_{m, n, p}($ with $p>0)$ or a $H_{m, n, l}($ with $l>0)$. Suppose G_{1} is a $G_{m, n, p}$. Further, we may assume $0<2 p \leq m \leq n$ so that G_{1} has girth m.

If $G_{2}=H_{m^{\prime}, n^{\prime}, l}$ with $m^{\prime} \leq n^{\prime}$ and $l>0$ has the same Ihara zeta function as G_{1}, then G_{2} has girth m^{\prime}, so $m^{\prime}=m$. Since they have the same size, we conclude $n^{\prime}+l=n-p$ or $n=n^{\prime}+l+p$. Counting spanning trees, we have $m n^{\prime}=m n-p^{2}$, whence $p^{2}=m(l+p)$. Since $l>0$ and $m \geq 2 p$ this is a contradiction.

Suppose that $G_{2}=G_{m^{\prime}, n^{\prime}, p^{\prime}}$ with $0 \leq 2 p^{\prime} \leq m^{\prime} \leq n^{\prime}$ has the same Ihara zeta function as G_{1}. Since G_{1} and G_{2} have the same girth, $m^{\prime}=m$. They must also have the same number of edges, so $m+n-p=m^{\prime}+n^{\prime}-p^{\prime}$, and $n-p=n^{\prime}-p^{\prime}$. This means that for such G_{2}, there is a constant $s=n-p$ for which $n^{\prime}-p^{\prime}=s$. So if we vary p^{\prime}, then n^{\prime} varies equally. If $m=n$, then $p=p^{\prime}$ and the graphs are the same. Otherwise if $m \neq n$, we can see if the term $-2 u^{n}$ will always be present in the Ihara Zeta Function Inverse by checking if n is strictly less than the powers of the other terms, and strictly greater than m and 0 which is true by $m \neq n$. Since $n>m>0, n>1$ so $2 n>n$. Since $n>m \geq 2 p$, we have $m+n-2 p>n$. Since $m>0, m+n>n$. As $m, n>0$ and $m+n-2 p>n$, we have that $2 m+2 n-2 p>n$, $m+2 n-2 p>n, 2 m+n-2 p>n$. We also have $2 m+2 n-4 p>2 n$, and since $2 n>n$ we know $2 m+2 n-4 p>n$. This leaves $2 m$ as the only term that could collide with the n term. First assume $n=2 m$. Then the zeta function for $G_{m, n, p}$ is:

$$
\begin{aligned}
\zeta_{G_{m, n, p}}(u)^{-1}= & -4 u^{6 m-2 p}+u^{6 m-4 p}+2 u^{5 m-2 p}+2 u^{4 m-2 p} \\
& +u^{4 m}+2 u^{3 m}-2 u^{3 m-2 p}-u^{2 m}-2 u^{m}+1
\end{aligned}
$$

We must determine whether the 2 m term collides with any other terms. We know $3 m-2 p=m+n-2 p>n=2 m$ from earlier, so $m-2 p>0$. Since $m>1,6 m-2 p>$ $5 m-2 p>4 m-2 p>3 m-2 p>2 m$ and likewise $6 m>5 m>4 m>3 m>2 m$. Then we also have $2 m-4 p>0$, so $6 m-4 p>4 m-4 p>2 m$. This means all exponents will be different than $2 m$, so the zeta function will have $-u^{2 m}=-u^{n}$. Because we showed earlier that for $n \neq 2 m$ that the zeta function must have term $-2 u^{n}$, this means a graph G_{2} has the same zeta function as G_{1} only if $n=n^{\prime}$, and since $n-p=n^{\prime}-p^{\prime}$ we know $p=p^{\prime}$ and $G_{2}=G_{1}$. Second, let $n \neq 2 m$. By the previous argument, if $n^{\prime}=2 m$, then G_{2} will have a different zeta function. Then, from our arguments we know the zeta function inverse for G_{1} must have term $-2 u^{n}$, and that the zeta function for G_{2} must have term $-2 u^{n^{\prime}}$. Therefore it must be the case that $n=n^{\prime}, p=p^{\prime}$, and $G_{1}=G_{2}$.

There are multigraphs of rank 2 that admit to a similar treatment. We need to lessen the constraints on the definition of a $G_{m, n, p}$ graph to instead have $m, n>p$ (but still $p \geq 0$). The removal of $m, n>2$ means that when m or n equal one, it will be a loop, and when they equal two a digon. The remaining part of the condition $m, n>p$ ensures that at least one edge will not be combined between the two cycles as opposed to at least two edges.

References

[H] K. Hammer, Spanning tree formulas for Abelian covers of multigraphs and Artin-Ihara L functions, CSU, Chico Honor's thesis. (2019).
[KS] M. Kotani and T. Sunada. Zeta functions of finite graphs. J. Math. Sci. Univ. Tokyo 7 (2000), 7-25.
[SS] G. Scott and C. Storm. The coefficients of the Ihara zeta function. Involve $\mathbf{1}$ (2008), 217-233.
[T] A. Terras. Zeta functions of graphs. A stroll through the garden. Cambridge Studies in Advanced Mathematics, 128. Cambridge University Press, Cambridge, 2011.

[^0]: Date: May 2023.

